1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
|
//
//
// chaos~
// Copyright (C) 2004 Tim Blechmann
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; see the file COPYING. If not, write to
// the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
// Boston, MA 02111-1307, USA.
#include "map_base.hpp"
// henon map: x[n+1] = y[n] + 1 - a * x[n] * x[n]
// y[n+1] = b * x[n]
// b != 0
// taken from Willi-Hans Steeb: Chaos and Fractals
class henon:
public map_base
{
public:
henon():
map_base(2)
{
CHAOS_SYS_INIT(x,0,0);
CHAOS_SYS_INIT(y,0,1);
CHAOS_PAR_INIT(a,1.4);
CHAOS_PAR_INIT(b,0.3);
}
~henon()
{
}
virtual void m_step()
{
data_t x = m_data[0];
data_t y = m_data[1];
m_data[0] = 1 + y - CHAOS_PARAMETER(a) * x * x;
m_data[1] = CHAOS_PARAMETER(b) * x;
}
CHAOS_SYSVAR_FUNCS(x, 0);
CHAOS_SYSVAR_FUNCS(y, 1);
CHAOS_SYSPAR_FUNCS(a);
CHAOS_SYSPAR_FUNCS_PRED(b, m_pred_b);
bool m_pred_b(t_float f)
{
return (f != 0);
}
};
#define HENON_CALLBACKS \
MAP_CALLBACKS; \
CHAOS_SYS_CALLBACKS(a); \
CHAOS_SYS_CALLBACKS(b); \
CHAOS_SYS_CALLBACKS(x); \
CHAOS_SYS_CALLBACKS(y);
#define HENON_ATTRIBUTES \
MAP_ATTRIBUTES; \
CHAOS_SYS_ATTRIBUTE(a); \
CHAOS_SYS_ATTRIBUTE(b); \
CHAOS_SYS_ATTRIBUTE(x); \
CHAOS_SYS_ATTRIBUTE(y);
|