aboutsummaryrefslogtreecommitdiff
path: root/chaos/src/latoocarfian.hpp
blob: 1fe1b9adf6e933295d9793d9983ea358b1dbd388 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
// 
//  
//  chaos~
//  Copyright (C) 2004  Tim Blechmann
//  
//  This program is free software; you can redistribute it and/or modify
//  it under the terms of the GNU General Public License as published by
//  the Free Software Foundation; either version 2 of the License, or
//  (at your option) any later version.
//  
//  This program is distributed in the hope that it will be useful,
//  but WITHOUT ANY WARRANTY; without even the implied warranty of
//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
//  GNU General Public License for more details.
//  
//  You should have received a copy of the GNU General Public License
//  along with this program; see the file COPYING.  If not, write to
//  the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
//  Boston, MA 02111-1307, USA.

#include "map_base.hpp"
#include <cmath>

//  latoocarfian model: x1[n+1] = sin(x2[n]*b) + c*sin(x1[n]*b)
//                      x2[n+1] = sin(x1[n]*a) + d*sin(x2[n]*a)
//                      -3 < a,b < 3
//                      -0.5 < c,d < 1.5
//  taken from Pickover: Chaos In Wonderland

class latoocarfian
	: public map_base
{
public:
	latoocarfian()
	{
		m_num_eq = 2;
		m_data = new data_t[m_num_eq];

		CHAOS_SYS_INIT(x1,0.5);
		CHAOS_SYS_INIT(x2,0);
		CHAOS_SYS_INIT(a,-0.966918);
		CHAOS_SYS_INIT(b,2.879879);
		CHAOS_SYS_INIT(c,0.765145);
		CHAOS_SYS_INIT(d,0.744728);
	}
	
	~latoocarfian()
	{
		delete m_data;
	}

	virtual void m_step()
	{
		data_t x1 = m_data[0], x2 = m_data[1];
		data_t a = CHAOS_PARAMETER(a), b = CHAOS_PARAMETER(b),
			c = CHAOS_PARAMETER(c), d = CHAOS_PARAMETER(d);
		
		m_data[0] = sin(x2*b) + c*sin(x1*b);
		m_data[1] = sin(x1*a) + d*sin(x2*a);
	}

	CHAOS_SYSVAR_FUNCS(x1, 0);
	CHAOS_SYSVAR_FUNCS(x2, 1);

	CHAOS_SYSPAR_FUNCS_PRED(a,m_pred_1);
	CHAOS_SYSPAR_FUNCS_PRED(b,m_pred_1);
	CHAOS_SYSPAR_FUNCS_PRED(c,m_pred_2);
	CHAOS_SYSPAR_FUNCS_PRED(d,m_pred_2);

	bool m_pred_1(t_float f)
	{
		return (f > -3.f) && (f < 3.f);
	}

	bool m_pred_2(t_float f)
	{
		return (f > -0.5) && (f < 1.5);
	}
	
	/* function has a fix point for x1 == x2 == 0 */
	virtual void m_verify() 
	{
		for (int i = 0; i != get_num_eq(); ++i)
		{
#ifndef DOUBLE_PRECISION
			if (PD_BIGORSMALL(m_data[i]))
				m_data[i] = 0.01;
#endif
		}
	};
};


#define LATOOCARFIAN_CALLBACKS					\
MAP_CALLBACKS;									\
CHAOS_SYS_CALLBACKS(x1);						\
CHAOS_SYS_CALLBACKS(x2);						\
CHAOS_SYS_CALLBACKS(a);							\
CHAOS_SYS_CALLBACKS(b);							\
CHAOS_SYS_CALLBACKS(c);							\
CHAOS_SYS_CALLBACKS(d);

#define LATOOCARFIAN_ATTRIBUTES					\
MAP_ATTRIBUTES;									\
CHAOS_SYS_ATTRIBUTE(x1);						\
CHAOS_SYS_ATTRIBUTE(x2);						\
CHAOS_SYS_ATTRIBUTE(a);							\
CHAOS_SYS_ATTRIBUTE(b);							\
CHAOS_SYS_ATTRIBUTE(c);							\
CHAOS_SYS_ATTRIBUTE(d);