1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
|
//
//
// chaos~
// Copyright (C) 2004 Tim Blechmann
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; see the file COPYING. If not, write to
// the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
// Boston, MA 02111-1307, USA.
#include "map_base.hpp"
// tent map: x[n+1] = A*x[n] + B mod C
//
// taken from Julien C. Sprott, Chaos and Time-Series Analysis
class linear_congruental:
public map_base<2>
{
public:
linear_congruental()
{
CHAOS_SYS_INIT(x, 0, 0);
CHAOS_PAR_INIT(A, 1741);
CHAOS_PAR_INIT(B, 54773);
CHAOS_PAR_INIT(C, 259200);
}
void m_step()
{
data_t x = m_data[0];
m_data[0] = std::fmod( CHAOS_PARAMETER(A) * x + CHAOS_PARAMETER(B), CHAOS_PARAMETER(C));
}
CHAOS_SYSVAR_FUNCS(x,0);
CHAOS_SYSPAR_FUNCS(A);
CHAOS_SYSPAR_FUNCS(B);
CHAOS_SYSPAR_FUNCS(C);
};
#define LINEAR_CONGRUENTAL_CALLBACKS \
MAP_CALLBACKS; \
CHAOS_SYS_CALLBACKS(A); \
CHAOS_SYS_CALLBACKS(B); \
CHAOS_SYS_CALLBACKS(C); \
CHAOS_SYS_CALLBACKS(x);
#define LINEAR_CONGRUENTAL_ATTRIBUTES \
MAP_ATTRIBUTES; \
CHAOS_SYS_ATTRIBUTE(A); \
CHAOS_SYS_ATTRIBUTE(B); \
CHAOS_SYS_ATTRIBUTE(C); \
CHAOS_SYS_ATTRIBUTE(x);
|