aboutsummaryrefslogtreecommitdiff
path: root/chaos/src/lorenz.hpp
blob: c876b4a8dba92fd20719d4971388a39f6609a5f3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
// 
//  
//  chaos~
//  Copyright (C) 2004  Tim Blechmann
//  
//  This program is free software; you can redistribute it and/or modify
//  it under the terms of the GNU General Public License as published by
//  the Free Software Foundation; either version 2 of the License, or
//  (at your option) any later version.
//  
//  This program is distributed in the hope that it will be useful,
//  but WITHOUT ANY WARRANTY; without even the implied warranty of
//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
//  GNU General Public License for more details.
//  
//  You should have received a copy of the GNU General Public License
//  along with this program; see the file COPYING.  If not, write to
//  the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
//  Boston, MA 02111-1307, USA.

#include "ode_base.hpp"

//  lorenz model: dx1/dt = sigma * (x2 - x1)
//                dx2/dt = - x1 * x3 + r * x1 - x2
//                dx3/dt = x1 * x2 - b * x3
//  taken from Willi-Hans Steeb: Chaos and Fractals

class lorenz
	: public ode_base
{
public:
	lorenz()
	{
		m_num_eq = 3;
		m_data = new data_t[m_num_eq];

		CHAOS_SYS_INIT(method,0);
		CHAOS_SYS_INIT(dt,0.01);
		CHAOS_SYS_INIT(x1,0.8);
		CHAOS_SYS_INIT(x2,0.7);
		CHAOS_SYS_INIT(x3,0.6);
		CHAOS_SYS_INIT(sigma,16);
		CHAOS_SYS_INIT(b,4);
		CHAOS_SYS_INIT(r,40);

		ode_base_alloc();
	}
	
	~lorenz()
	{
		ode_base_free();
		delete m_data;
	}

	virtual void m_system(data_t* deriv, data_t* data)
	{
		data_t x1 = data[0], x2 = data[1], x3 = data[2];
		
		deriv[0] = CHAOS_PARAMETER(sigma) * (x2 - x1);
		deriv[1] = - x1 * x3 + CHAOS_PARAMETER(r) * x1 - x2;
		deriv[2] = x1 * x2 - CHAOS_PARAMETER(b) * x3;
	}

	CHAOS_SYSVAR_FUNCS(x1, 0);
	CHAOS_SYSVAR_FUNCS(x2, 1);
	CHAOS_SYSVAR_FUNCS(x3, 2);

	CHAOS_SYSPAR_FUNCS_PRED(sigma, m_pred);
	CHAOS_SYSPAR_FUNCS_PRED(b, m_pred);
	CHAOS_SYSPAR_FUNCS_PRED(r, m_pred);

	bool m_pred (t_float f)
	{
		return (f > 0);
	}

};


#define LORENZ_CALLBACKS						\
ODE_CALLBACKS;									\
CHAOS_SYS_CALLBACKS(x1);						\
CHAOS_SYS_CALLBACKS(x2);						\
CHAOS_SYS_CALLBACKS(x3);						\
CHAOS_SYS_CALLBACKS(sigma);						\
CHAOS_SYS_CALLBACKS(r);							\
CHAOS_SYS_CALLBACKS(b);

#define LORENZ_ATTRIBUTES						\
ODE_ATTRIBUTES;									\
CHAOS_SYS_ATTRIBUTE(x1);						\
CHAOS_SYS_ATTRIBUTE(x2);						\
CHAOS_SYS_ATTRIBUTE(x3);						\
CHAOS_SYS_ATTRIBUTE(sigma);						\
CHAOS_SYS_ATTRIBUTE(r);							\
CHAOS_SYS_ATTRIBUTE(b);