aboutsummaryrefslogtreecommitdiff
path: root/define_loudspeakers.c
blob: 16c5b62bcf1c674e611f06bbe818cc43772c8fd6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
/* define_loudspeakers.c 1.00b1----> x-max4.2

written by Ville Pulkki 1999-2003
Helsinki University of Technology 
and 
Unversity of California at Berkeley

See copyright in file with name LICENSE.txt  */

#include "define_loudspeakers.h"

#ifndef VBAP_OBJECT
# ifdef PD
// If we are within VBAP (which includes define_loudspeakers), then don't create a main for define_loudspeakres
void define_loudspeakers_setup(void)
{
	def_ls_class = class_new(gensym("define_loudspeakers"), (t_newmethod)def_ls_new, 0, (short)sizeof(t_def_ls), 0, A_GIMME, 0);
	/* def_ls_new = creation function, A_DEFLONG = its (optional) arguement is a long (32-bit) int */
	
	class_addbang(def_ls_class, (t_method)def_ls_bang);			/* the procedure it uses when it gets a bang in the left inlet */
	class_addmethod(def_ls_class, (t_method)def_ls_read_directions, gensym("ls-directions"), A_GIMME, 0);	
	class_addmethod(def_ls_class, (t_method)def_ls_read_triplets, gensym("ls-triplets"), A_GIMME, 0);

	logpost(NULL,1, DFLS_VERSION);
}
# else /* Max */
void main(void)
{
	setup((t_messlist **)&def_ls_class, (method)def_ls_new, 0L, (short)sizeof(t_def_ls), 0L, A_GIMME, 0); 
	/* def_ls_new = creation function, A_DEFLONG = its (optional) arguement is a long (32-bit) int */
	
	addbang((method)def_ls_bang);			/* the procedure it uses when it gets a bang in the left inlet */
	addmess((method)def_ls_read_directions, "ls-directions", A_GIMME, 0);	
	addmess((method)def_ls_read_triplets, "ls-triplets", A_GIMME, 0);
	addmess((method)traces, "enabletrace", A_LONG, 0);

	post(DFLS_VERSION);
}
# endif /* PD */
#endif /* ! VBAP_OBJECT */

static void def_ls_bang(t_def_ls *x)						/* x = reference to this instance of the object */ 
{   // calculate and print out chosen loudspeaker sets and corresponding  matrices
	
	if(x->x_ls_read == 1)
	{
		if(x->x_def_ls_amount < x->x_def_ls_dimension)
		{
			error("define-loudspeakers: Too few loudspeakers!");
			return;
		} 
		else 
		{
			if(x->x_def_ls_dimension == 3)
			{
				if(x->x_triplets_specified==0) choose_ls_triplets(x);
				calculate_3x3_matrixes(x);
			} 
			else if(x->x_def_ls_dimension == 2)
			{
		  	choose_ls_tuplets(x);
			}
		  else 
			{
		  	error("define-loudspeakers: Error in loudspeaker direction data");
		  	error("dimension azimuth1 [elevation1] azimuth2 [elevation2]...");
		  	error("dimension == 2 for horizontal ls arrays");
		  	error("dimension == 3 for 3-D ls arrays (speakers also upward and/or downward ");
		  }
		}
	} 
	else
	{
		error("define-loudspeakers: Error in loudspeaker direction data");
		error("dimension azimuth1 [elevation1] azimuth2 [elevation2]...");
		error("dimension == 2 for horizontal ls arrays");
		error("dimension == 3 for 3-D ls arrays (speakers also upward and/or downward ");
	}
}

/*--------------------------------------------------------------------------*/

/*
void def_ls_int(t_def_ls *x, long n)		// x = the instance of the object, n = the int received in the right inlet 
{
 // do something if an int comes in the left inlet???	
}
*/

static void def_ls_read_triplets(t_def_ls *x, t_symbol *s, int ac, Atom *av)
// when loudspeaker triplets come in a message
{
	t_ls_set *trip_ptr,  *tmp_ptr, *prev;
	if(x->x_ls_read == 0)
	{
		error("define_loudspeakers: Define loudspeaker directions first!");
		return;
	}
	
	if(x->x_def_ls_dimension == 2)
	{
		error("define_loudspeakers: Can't specify loudspeaker triplets in 2-D setup!");
		return;
	}
		
 	trip_ptr = x->x_ls_set;
	prev = NULL;
	while (trip_ptr != NULL)
	{
		tmp_ptr = trip_ptr;
		trip_ptr = trip_ptr->next;
		freebytes(tmp_ptr, sizeof (struct t_ls_set));
	}
	x->x_ls_set = NULL;
	
    int i;
	for(i=0;i<ac;i+=3)
	{
		long l1 = 0,l2 = 0,l3 = 0;

/*
		if(av[i].a_type == A_LONG)
			l1 = av[i].a_w.w_long;
		else */ if(av[i].a_type == A_FLOAT) 
			l1 =  (long) av[i].a_w.w_float;

/*
		if(av[i+1].a_type == A_LONG) 
			l2 = av[i+1].a_w.w_long;
		else */ if(av[i+1].a_type == A_FLOAT) 
			l2 =  (long) av[i+1].a_w.w_float;

/*
		if(av[i+2].a_type == A_LONG) 
			l3 = av[i+2].a_w.w_long;
		else */ if(av[i+2].a_type == A_FLOAT) 
			l3 =  (long) av[i+2].a_w.w_float;

		add_ldsp_triplet(l1-1,l2-1,l3-1,x);
	}
	x->x_triplets_specified=1;
}



static void def_ls_read_directions(t_def_ls *x, t_symbol *s, int ac, Atom *av)
// when loudspeaker directions come in a message
{
	if (x->x_ls_read)
	{
		// Remove old matrices
		t_ls_set* trip_ptr = x->x_ls_set;
		while (trip_ptr != NULL)
		{ // remove old matrices
		 t_ls_set* tmp_ptr = trip_ptr;
		 trip_ptr = trip_ptr->next;
		 freebytes(tmp_ptr, sizeof (struct t_ls_set));
		}
	}
	x->x_ls_set = NULL;

	initContent_ls_directions(x,ac,av);
}

/*--------------------------------------------------------------------------*/

static void ls_angles_to_cart(t_ls *ls)
// convert angular direction to cartesian
{
  t_float azi = ls->azi;
  t_float ele = ls->ele;
  ls->x = cos((t_float) azi * atorad) * cos((t_float) ele * atorad);
  ls->y = sin((t_float) azi * atorad) * cos((t_float) ele * atorad);
  ls->z = sin((t_float) ele * atorad);
}

/* create new instance of object... MUST send it an int even if you do nothing with this int!! */
static void *def_ls_new(t_symbol *s, int ac, Atom *av)	
{
    
    
    //post("def_ls_new: AC = %d", ac);
    
    
	// s is object name (we ignore it)
	t_def_ls *x = (t_def_ls *)newobject(def_ls_class);

#ifdef PD
	x->x_outlet0 =  outlet_new(&x->x_obj, gensym("list"));  /* create a (list) outlet */
#else /* Max */
	x->x_outlet0 =  outlet_new(x, 0L);	/* create a (list) outlet */
#endif /* PD */

	initContent_ls_directions(x,ac,av); // Initialize object internal data from a ls-directions list

	return x;					/* return a reference to the object instance */
}

/* define-loudspeakers message integrated into vbap object */
void vbap_def_ls(t_def_ls *x, t_symbol *s, int ac, Atom *av)	
{
	initContent_ls_directions(x,ac,av); // Initialize object internal data from a ls-directions list

    logpost(NULL,3, "vbap_def_ls:   %ld-D configuration with %ld speakers", x->x_def_ls_dimension, x->x_def_ls_amount );
    
	def_ls_bang(x); // calculate and send matrix to vbap
}

/** Initialize the object content from parameters : ls-directions list */
static void initContent_ls_directions(t_def_ls *x,int ac,Atom*av)
{
	x->x_ls_read = 0;
	
	long d = 0;
/*	if (av[0].a_type == A_LONG) d = av[0].a_w.w_long;
	else */
    
    if(av[0].a_type == A_FLOAT) d = (long)av[0].a_w.w_float;
	else { error("define-loudspeakers: dimension NaN"); return; }

	if (d==2 || d==3)
	{
		 x->x_def_ls_dimension= d;
		 x->x_ls_read = 1;
	} 
	else
	{
		x->x_def_ls_dimension= 0;
		error("define-loudspeakers: Dimension has to be 2 or 3!");
		return;
	}
		
	int pointer = 1;
	x->x_def_ls_amount= (ac-1) / (x->x_def_ls_dimension - 1);

	// read loudspeaker direction angles  
    int i;
	for(i=0; i < x->x_def_ls_amount;i++)
	{
		t_float azi = 0;
/*		if(av[pointer].a_type == A_LONG) azi = (float) av[pointer].a_w.w_long;
		else */ if(av[pointer].a_type == A_FLOAT) azi = av[pointer].a_w.w_float;
		else { error("define-loudspeakers: direction angle #%d NaN",i+1); x->x_ls_read = 0; return; }

		x->x_ls[i].azi = azi;
		
		pointer++;

		t_float ele = 0; // in 2d elevation is zero
		if(x->x_def_ls_dimension == 3)
		{  // 3-D 
/*			if(av[pointer].a_type == A_LONG) ele = (float) av[pointer].a_w.w_long;
			else */ if(av[pointer].a_type == A_FLOAT) ele = av[pointer].a_w.w_float;
			else { error("define-loudspeakers: elevation #%d NaN",i+1);  x->x_ls_read = 0; return; }

			pointer++;
		} 
		x->x_ls[i].ele = ele;
	}
	
	if(x->x_ls_read == 1)
	{
        int i;
		for(i=0;i<x->x_def_ls_amount;i++)
		{
			ls_angles_to_cart(&x->x_ls[i]);	
		}
	}
	x->x_triplets_specified=0;
	x->x_ls_set = NULL;
}

static void choose_ls_triplets(t_def_ls *x) 
     /* Selects the loudspeaker triplets, and
      calculates the inversion matrices for each selected triplet.
     A line (connection) is drawn between each loudspeaker. The lines
     denote the sides of the triangles. The triangles should not be 
     intersecting. All crossing connections are searched and the 
     longer connection is erased. This yields non-intesecting triangles,
     which can be used in panning. 
     See theory in paper Pulkki, V. Lokki, T. "Creating Auditory Displays
     with Multiple Loudspeakers Using VBAP: A Case Study with
     DIVA Project" in International Conference on 
     Auditory Displays -98.*/
{
  int i,j,k,l,/*m,li,*/ table_size;
  //int *i_ptr;
  //t_ls vb1,vb2,tmp_vec;
  int connections[MAX_LS_AMOUNT][MAX_LS_AMOUNT];
  //float angles[MAX_LS_AMOUNT];
  //int sorted_angles[MAX_LS_AMOUNT];
  t_float distance_table[((MAX_LS_AMOUNT * (MAX_LS_AMOUNT - 1)) / 2)];
  int distance_table_i[((MAX_LS_AMOUNT * (MAX_LS_AMOUNT - 1)) / 2)];
  int distance_table_j[((MAX_LS_AMOUNT * (MAX_LS_AMOUNT - 1)) / 2)];
  t_float distance;
  t_ls_set *trip_ptr, *prev, *tmp_ptr;
  int ls_amount = x->x_def_ls_amount;
  t_ls *lss = x->x_ls;
  if (ls_amount == 0) { post("define-loudspeakers: Number of loudspeakers is zero"); return; }
 
  for(i=0;i<ls_amount;i++)
    for(j=i+1;j<ls_amount;j++)
      for(k=j+1;k<ls_amount;k++)
			{
        if(vol_p_side_lgth(i,j,k, x->x_ls) > MIN_VOL_P_SIDE_LGTH)
				{
          connections[i][j]=1;
          connections[j][i]=1;
          connections[i][k]=1;
          connections[k][i]=1;
          connections[j][k]=1;
          connections[k][j]=1;
          add_ldsp_triplet(i,j,k,x);
        }
      }
   

  /*calculate distancies between all lss and sorting them*/
  table_size =(((ls_amount - 1) * (ls_amount)) / 2); 
  for(i=0;i<table_size; i++)
    distance_table[i] = 100000.0;
  for(i=0;i<ls_amount;i++)
	{ 
    for(j=(i+1);j<ls_amount; j++)
		{ 
		  if(connections[i][j] == 1) 
		  {
        distance = fabs(vec_angle(lss[i],lss[j]));
        k=0;
        while(distance_table[k] < distance)
          k++;
        for(l=(table_size - 1);l > k ;l--)
				{
          distance_table[l] = distance_table[l-1];
          distance_table_i[l] = distance_table_i[l-1];
          distance_table_j[l] = distance_table_j[l-1];
        }
        distance_table[k] = distance;
        distance_table_i[k] = i;
        distance_table_j[k] = j;
      } 
			else
			{
        table_size--;
			}
    }
  }

  /* disconnecting connections which are crossing shorter ones,
     starting from shortest one and removing all that cross it,
     and proceeding to next shortest */
  for(i=0; i<(table_size); i++)
	{
    int fst_ls = distance_table_i[i];
		int sec_ls = distance_table_j[i];
    if(connections[fst_ls][sec_ls] == 1)
		{
      for(j=0; j<ls_amount ; j++)
			{
        for(k=j+1; k<ls_amount; k++)
				{
          if( (j!=fst_ls) && (k != sec_ls) && (k!=fst_ls) && (j != sec_ls))
					{
            if(lines_intersect(fst_ls, sec_ls, j,k,x->x_ls) == 1)
						{
              connections[j][k] = 0;
              connections[k][j] = 0;
            }
          }
				}
			}
		}
  }

  /* remove triangles which had crossing sides
     with smaller triangles or include loudspeakers*/
  trip_ptr = x->x_ls_set;
  prev = NULL;
  while (trip_ptr != NULL)
	{
    i = trip_ptr->ls_nos[0];
    j = trip_ptr->ls_nos[1];
    k = trip_ptr->ls_nos[2];
    if(connections[i][j] == 0 || 
       connections[i][k] == 0 || 
       connections[j][k] == 0 ||
			 any_ls_inside_triplet(i,j,k,x->x_ls,ls_amount) == 1 )
		{
      if(prev != NULL) 
			{
        prev->next = trip_ptr->next;
        tmp_ptr = trip_ptr;
        trip_ptr = trip_ptr->next;
        freebytes(tmp_ptr, sizeof (struct t_ls_set));
      } 
			else 
			{
        x->x_ls_set = trip_ptr->next;
        tmp_ptr = trip_ptr;
        trip_ptr = trip_ptr->next;
        freebytes(tmp_ptr, sizeof (struct t_ls_set));
      }
    } 
		else 
		{
      prev = trip_ptr;
      trip_ptr = trip_ptr->next;
    }
  }
  x->x_triplets_specified=1;
}


int any_ls_inside_triplet(int a, int b, int c,t_ls lss[MAX_LS_AMOUNT],int ls_amount)
   /* returns 1 if there is loudspeaker(s) inside given ls triplet */
{
  t_float invdet;
  t_ls *lp1, *lp2, *lp3;
  t_float invmx[9];
  int i,j;
  t_float tmp;
  int any_ls_inside, this_inside;

  lp1 =  &(lss[a]);
  lp2 =  &(lss[b]);
  lp3 =  &(lss[c]);

  /* matrix inversion */
  invdet = 1.0 / (  lp1->x * ((lp2->y * lp3->z) - (lp2->z * lp3->y))
                    - lp1->y * ((lp2->x * lp3->z) - (lp2->z * lp3->x))
                    + lp1->z * ((lp2->x * lp3->y) - (lp2->y * lp3->x)));
  
  invmx[0] = ((lp2->y * lp3->z) - (lp2->z * lp3->y)) * invdet;
  invmx[3] = ((lp1->y * lp3->z) - (lp1->z * lp3->y)) * -invdet;
  invmx[6] = ((lp1->y * lp2->z) - (lp1->z * lp2->y)) * invdet;
  invmx[1] = ((lp2->x * lp3->z) - (lp2->z * lp3->x)) * -invdet;
  invmx[4] = ((lp1->x * lp3->z) - (lp1->z * lp3->x)) * invdet;
  invmx[7] = ((lp1->x * lp2->z) - (lp1->z * lp2->x)) * -invdet;
  invmx[2] = ((lp2->x * lp3->y) - (lp2->y * lp3->x)) * invdet;
  invmx[5] = ((lp1->x * lp3->y) - (lp1->y * lp3->x)) * -invdet;
  invmx[8] = ((lp1->x * lp2->y) - (lp1->y * lp2->x)) * invdet;

  any_ls_inside = 0;
  for(i=0; i< ls_amount; i++) 
	{
    if (i != a && i!=b && i != c)
		{
      this_inside = 1;
      for(j=0; j< 3; j++)
			{
        tmp = lss[i].x * invmx[0 + j*3];
        tmp += lss[i].y * invmx[1 + j*3];
        tmp += lss[i].z * invmx[2 + j*3];
        if(tmp < -0.001)
          this_inside = 0;
      }
      if(this_inside == 1)
        any_ls_inside=1;
    }
  }
  return any_ls_inside;
}

static void add_ldsp_triplet(int i, int j, int k, t_def_ls *x)
     /* adds i,j,k triplet to structure*/
{
  struct t_ls_set *trip_ptr, *prev;
  trip_ptr = x->x_ls_set;
  prev = NULL;
  while (trip_ptr != NULL)
	{
    prev = trip_ptr;
    trip_ptr = trip_ptr->next;
  }
  trip_ptr = (struct t_ls_set*) getbytes (sizeof (struct t_ls_set));

    //post("add_ldsp_triplet getbytes:  %ld", sizeof (struct t_ls_set));
    
  if(prev == NULL)
    x->x_ls_set = trip_ptr;
  else 
    prev->next = trip_ptr;
  trip_ptr->next = NULL;
  trip_ptr->ls_nos[0] = i;
  trip_ptr->ls_nos[1] = j;
	trip_ptr->ls_nos[2] = k;
}




t_float vec_angle(t_ls v1, t_ls v2)
// angle between two loudspeakers
{
  t_float inner= ((v1.x*v2.x + v1.y*v2.y + v1.z*v2.z)/
              (vec_length(v1) * vec_length(v2)));
  if(inner > 1.0)
    inner= 1.0;
  if (inner < -1.0)
    inner = -1.0;
  return fabs( acos( inner));
}

t_float vec_length(t_ls v1)
// length of a vector
{
  return (sqrt(v1.x*v1.x + v1.y*v1.y + v1.z*v1.z));
}

t_float vec_prod(t_ls v1, t_ls v2)
// vector dot product
{
  return (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z);
}


t_float vol_p_side_lgth(int i, int j,int k, t_ls  lss[MAX_LS_AMOUNT] )
{
  /* calculate volume of the parallelepiped defined by the loudspeaker
     direction vectors and divide it with total length of the triangle sides. 
     This is used when removing too narrow triangles. */

  t_float volper, lgth;
  t_ls xprod;
  ls_cross_prod(lss[i], lss[j], &xprod);
  volper = fabsf(vec_prod(xprod, lss[k]));
  lgth = (fabsf(vec_angle(lss[i],lss[j])) 
          + fabsf(vec_angle(lss[i],lss[k])) 
          + fabsf(vec_angle(lss[j],lss[k])));
  if(lgth>0.00001)
    return volper / lgth;
  else
    return 0.0;
}

static void ls_cross_prod(t_ls v1,t_ls v2, 
                t_ls *res) 
// vector cross product
{
  t_float length;
  res->x = (v1.y * v2.z ) - (v1.z * v2.y);
  res->y = (v1.z * v2.x ) - (v1.x * v2.z);
  res->z = (v1.x * v2.y ) - (v1.y * v2.x);

  length= vec_length(*res);
  res->x /= length;
  res->y /= length;
  res->z /= length;
}


static int lines_intersect(int i,int j,int k,int l,t_ls  lss[MAX_LS_AMOUNT])
     /* checks if two lines intersect on 3D sphere 
       */
{
 t_ls v1;
  t_ls v2;
  t_ls v3, neg_v3;
  //t_float angle;
  t_float dist_ij,dist_kl,dist_iv3,dist_jv3,dist_inv3,dist_jnv3;
  t_float dist_kv3,dist_lv3,dist_knv3,dist_lnv3;
  // TODO epsilon needs to be updated for 64-bit/double precision
  t_float epsilon = 1e-9;

  ls_cross_prod(lss[i],lss[j],&v1);
  ls_cross_prod(lss[k],lss[l],&v2);
  ls_cross_prod(v1,v2,&v3);

  neg_v3.x= 0.0 - v3.x;
  neg_v3.y= 0.0 - v3.y;
  neg_v3.z= 0.0 - v3.z;

  dist_ij = (vec_angle(lss[i],lss[j]));
  dist_kl = (vec_angle(lss[k],lss[l]));
  dist_iv3 = (vec_angle(lss[i],v3));
  dist_jv3 = (vec_angle(v3,lss[j]));
  dist_inv3 = (vec_angle(lss[i],neg_v3));
  dist_jnv3 = (vec_angle(neg_v3,lss[j]));
  dist_kv3 = (vec_angle(lss[k],v3));
  dist_lv3 = (vec_angle(v3,lss[l]));
  dist_knv3 = (vec_angle(lss[k],neg_v3));
  dist_lnv3 = (vec_angle(neg_v3,lss[l]));

  /* if one of loudspeakers is close to crossing point, don't do anything*/
  if(fabsf(dist_iv3)  <= epsilon || fabsf(dist_jv3)  <= epsilon || 
     fabsf(dist_kv3)  <= epsilon || fabsf(dist_lv3)  <= epsilon ||
     fabsf(dist_inv3) <= epsilon || fabsf(dist_jnv3) <= epsilon || 
     fabsf(dist_knv3) <= epsilon || fabsf(dist_lnv3) <= epsilon )
    return(0);

  // if crossing point is on line between both loudspeakers return 1
  if (((fabsf(dist_ij - (dist_iv3 + dist_jv3))   <= epsilon)  &&
       (fabsf(dist_kl - (dist_kv3 + dist_lv3))   <= epsilon)) ||
      ((fabsf(dist_ij - (dist_inv3 + dist_jnv3)) <= epsilon)  &&
       (fabsf(dist_kl - (dist_knv3 + dist_lnv3)) <= epsilon))) {
    return (1);
  } else {
    return (0);
  }
}

static void  calculate_3x3_matrixes(t_def_ls *x)
     /* Calculates the inverse matrices for 3D */
{  
  t_float invdet;
  t_ls *lp1, *lp2, *lp3;
  t_float *invmx;
  //t_float *ptr;
  struct t_ls_set *tr_ptr = x->x_ls_set;
  
  unsigned long triplet_amount = 0, /*ftable_size,*/i,pointer,list_length=0; 
   
    
  Atom *at;
  t_ls *lss = x->x_ls;
  
  if (tr_ptr == NULL)
	{
    error("define-loudspeakers: Not valid 3-D configuration\n");
    return;
  }
	
  /* counting triplet amount */
  while(tr_ptr != NULL)
	{
    triplet_amount++;
    tr_ptr = tr_ptr->next;
  }
  tr_ptr = x->x_ls_set;
  list_length= triplet_amount * 21 + 3;
  at= (Atom *) getbytes(list_length*sizeof(Atom));


  SETLONG(&at[0], x->x_def_ls_dimension);
  SETLONG(&at[1], x->x_def_ls_amount);
  pointer=2;
  
  while(tr_ptr != NULL){
    lp1 =  &(lss[tr_ptr->ls_nos[0]]);
    lp2 =  &(lss[tr_ptr->ls_nos[1]]);
    lp3 =  &(lss[tr_ptr->ls_nos[2]]);

    /* matrix inversion */
    invmx = tr_ptr->inv_mx;
    invdet = 1.0 / (  lp1->x * ((lp2->y * lp3->z) - (lp2->z * lp3->y))
                    - lp1->y * ((lp2->x * lp3->z) - (lp2->z * lp3->x))
                    + lp1->z * ((lp2->x * lp3->y) - (lp2->y * lp3->x)));

    invmx[0] = ((lp2->y * lp3->z) - (lp2->z * lp3->y)) * invdet;
    invmx[3] = ((lp1->y * lp3->z) - (lp1->z * lp3->y)) * -invdet;
  	invmx[6] = ((lp1->y * lp2->z) - (lp1->z * lp2->y)) * invdet;
    invmx[1] = ((lp2->x * lp3->z) - (lp2->z * lp3->x)) * -invdet;
    invmx[4] = ((lp1->x * lp3->z) - (lp1->z * lp3->x)) * invdet;
    invmx[7] = ((lp1->x * lp2->z) - (lp1->z * lp2->x)) * -invdet;
    invmx[2] = ((lp2->x * lp3->y) - (lp2->y * lp3->x)) * invdet;
    invmx[5] = ((lp1->x * lp3->y) - (lp1->y * lp3->x)) * -invdet;
    invmx[8] = ((lp1->x * lp2->y) - (lp1->y * lp2->x)) * invdet;
    for(i=0;i<3;i++){
    	SETLONG(&at[pointer], tr_ptr->ls_nos[i]+1);
    	pointer++;
    }
    for(i=0;i<9;i++){
    	SETFLOAT(&at[pointer], invmx[i]);
    	pointer++;
    }
    SETFLOAT(&at[pointer], lp1->x); pointer++;
    SETFLOAT(&at[pointer], lp2->x); pointer++;
    SETFLOAT(&at[pointer], lp3->x); pointer++;
    SETFLOAT(&at[pointer], lp1->y); pointer++;
    SETFLOAT(&at[pointer], lp2->y); pointer++;
    SETFLOAT(&at[pointer], lp3->y); pointer++;
    SETFLOAT(&at[pointer], lp1->z); pointer++;
    SETFLOAT(&at[pointer], lp2->z); pointer++;
    SETFLOAT(&at[pointer], lp3->z); pointer++;
 
     
      
    tr_ptr = tr_ptr->next;
  }
    
	sendLoudspeakerMatrices(x,list_length, at);
    
   freebytes(at, list_length*sizeof(Atom));
}



static void choose_ls_tuplets(t_def_ls *x)
     /* selects the loudspeaker pairs, calculates the inversion
        matrices and stores the data to a global array*/
{
  //t_float atorad = (2 * 3.1415927 / 360) ;
  int i,j;
  //t_float w1,w2;
  //t_float p1,p2;
  int sorted_lss[MAX_LS_AMOUNT];
  int exist[MAX_LS_AMOUNT];   
  int amount=0;
  t_float inv_mat[MAX_LS_AMOUNT][4];  // In 2-D ls amount == max amount of LS pairs
  t_float mat[MAX_LS_AMOUNT][4];
  //t_float *ptr;   
  //t_float *ls_table;
  t_ls *lss = x->x_ls;
  long ls_amount=x->x_def_ls_amount;
  long list_length;
  Atom *at;
  long pointer;
  
  for(i=0;i<MAX_LS_AMOUNT;i++){
    exist[i]=0;
  }

  /* sort loudspeakers according their aximuth angle */
  sort_2D_lss(x->x_ls,sorted_lss,ls_amount);

  /* adjacent loudspeakers are the loudspeaker pairs to be used.*/
  for(i=0;i<(ls_amount-1);i++){
    if((lss[sorted_lss[i+1]].azi - 
        lss[sorted_lss[i]].azi) <= (180 - 10)){
      if (calc_2D_inv_tmatrix( lss[sorted_lss[i]].azi, 
                               lss[sorted_lss[i+1]].azi, 
                               inv_mat[i],mat[i]) != 0){
        exist[i]=1;
        amount++;
      }
    }
  }

  if(((360 - lss[sorted_lss[ls_amount-1]].azi) 
      +lss[sorted_lss[0]].azi) <= (180 -  10)) {
    if(calc_2D_inv_tmatrix(lss[sorted_lss[ls_amount-1]].azi, 
                           lss[sorted_lss[0]].azi, 
                           inv_mat[ls_amount-1],mat[ls_amount-1]) != 0) { 
        exist[ls_amount-1]=1;
        amount++;
    } 
  }
  
  
  // Output
  list_length= amount * 10  + 2;
  at= (Atom *) getbytes(list_length*sizeof(Atom));
    //post("choose_ls_tuplets getbytes:  %ld", list_length*sizeof(Atom));

  SETLONG(&at[0], x->x_def_ls_dimension);
  SETLONG(&at[1], x->x_def_ls_amount);
  pointer=2;
  
  for (i=0;i<ls_amount - 1;i++){
    if(exist[i] == 1) {
    	SETLONG(&at[pointer], sorted_lss[i]+1);
    	pointer++;
    	SETLONG(&at[pointer], sorted_lss[i+1]+1);
    	pointer++;
       	for(j=0;j<4;j++) {
       		SETFLOAT(&at[pointer], inv_mat[i][j]);
    		pointer++;
       	}
       for(j=0;j<4;j++) {
       		SETFLOAT(&at[pointer], mat[i][j]);
    		pointer++;
       	}
    }
  }
  if(exist[ls_amount-1] == 1) {
    SETLONG(&at[pointer], sorted_lss[ls_amount-1]+1);
    pointer++;
    SETLONG(&at[pointer], sorted_lss[0]+1);
    pointer++;
    for(j=0;j<4;j++) {
    	SETFLOAT(&at[pointer], inv_mat[ls_amount-1][j]);
    	pointer++;
    }
    for(j=0;j<4;j++) {
    	SETFLOAT(&at[pointer], mat[ls_amount-1][j]);
    	pointer++;
    }
  }
    //post("choose_ls_tuplets:  before call to sendLoudspeakerMatrices");

    sendLoudspeakerMatrices(x,list_length, at);
  //outlet_anything(x->x_outlet0, gensym("loudspeaker-matrices"), list_length, at);
  freebytes(at, list_length*sizeof(Atom));
}

void sort_2D_lss(t_ls lss[MAX_LS_AMOUNT], int sorted_lss[MAX_LS_AMOUNT], 
                 int ls_amount)
// sort loudspeakers according to azimuth angle
{
  t_float tmp, tmp_azi;
//  t_float rad2ang = 360.0f / ( 2.0f * M_PI );

  //t_float x,y;
  /* Transforming angles between -180 and 180 */
  int i;
  for (i=0;i<ls_amount;i++) 
	{
    ls_angles_to_cart(&lss[i]);
    lss[i].azi = acos( lss[i].x) * rad2ang;
    if (fabs(lss[i].y) <= 0.001)
        tmp = 1.0;
    else
        tmp = lss[i].y / fabs(lss[i].y);
    lss[i].azi *= tmp;
  }
for (i=0;i<ls_amount;i++)
	{
    tmp = 2000;
		int index = 0;
        int j;
    for (j=0 ; j<ls_amount;j++)
		{
      if (lss[j].azi <= tmp)
			{
        tmp=lss[j].azi;
        index = j;
      }
    }
    sorted_lss[i]=index;
    tmp_azi = (lss[index].azi);
    lss[index].azi = (tmp_azi + (t_float) 4000.0);
  }
  for (i=0;i<ls_amount;i++) 
	{
    tmp_azi = (lss[i].azi);
    lss[i].azi = (tmp_azi - (t_float) 4000.0);
  }
}
  

static int calc_2D_inv_tmatrix(t_float azi1,t_float azi2, t_float inv_mat[4],t_float mat[4])
// calculate inverse 2x2 matrix
{
  t_float x1,x2,x3,x4; /* x1 x3 */
  //t_float y1,y2,y3,y4; /* x2 x4 */
  t_float det;
  
  mat[0]=x1 = cos(azi1 / rad2ang);
  mat[1]=x2 = sin(azi1 / rad2ang);
  mat[2]=x3 = cos(azi2 / rad2ang);
  mat[3]=x4 = sin(azi2 / rad2ang);
  det = (x1 * x4) - ( x3 * x2 );
   if(fabsf(det) <= 0.001) {

    inv_mat[0] = 0.0;
    inv_mat[1] = 0.0;
    inv_mat[2] = 0.0;
    inv_mat[3] = 0.0;
    return 0;
  } else {
    inv_mat[0] =   (x4 / det);
    inv_mat[1] =  (-x3 / det);
    inv_mat[2] =   (-x2 / det);
    inv_mat[3] =    (x1 / det);
    return 1;
  }
}