aboutsummaryrefslogtreecommitdiff
path: root/vbap.c
blob: f1e4052ebd971c17a4813705452ecd05801871f0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
/* vbap.c 

written by Ville Pulkki 1999-2003
Helsinki University of Technology 
and 
University of California at Berkeley 

See copyright in file with name LICENSE.txt  */

// Indicate that we are within VBAP object (specific to include define_loudspeakers content within vbap)
#define VBAP_OBJECT

#include "vbap.h"
#include "s_stuff.h"

// Function prototypes
static void new_spread_dir(t_vbap *x, t_float spreaddir[3], t_float vscartdir[3], t_float spread_base[3]);
static void new_spread_base(t_vbap *x, t_float spreaddir[3], t_float vscartdir[3]);
static void *vbap_class;				
static void vect_cross_prod(t_float v1[3], t_float v2[3],t_float v3[3]);
static void additive_vbap(t_float *final_gs, t_float cartdir[3], t_vbap *x);
static void vbap_bang(t_vbap *x);
static int vbap_getmem(t_vbap *x, int lsSetCount );
static void vbap_free(t_vbap *x);
static void vbap_matrix(t_vbap *x, Symbol *s, int ac, Atom *av);
#ifndef PD /* Max */
/* these are for getting data from a cold inlet on Max/MSP, in Pd you use t_floatinlet_new() in new() */
void vbap_ft1(t_vbap *x, double n);
void vbap_ft2(t_vbap *x, double n);
void vbap_in3(t_vbap *x, long n);
void vbap_ft4(t_vbap *x, double g);
#endif
static void spread_it(t_vbap *x, t_float *final_gs);
static void *vbap_new(t_float azi, t_float ele, t_float spread);
static void vbap(t_float g[3], long ls[3], t_vbap *x);
static void angle_to_cart(t_float azi, t_float ele, t_float res[3]);
static void cart_to_angle(t_float cvec[3], t_float avec[3]);

/*****************************************************
	 INCLUDE ALL define_loudspeakers functions directly into VBAP
******************************************************/
#include "define_loudspeakers.c"

/*****************************************************
	 Max Object Assist
******************************************************/
#ifndef PD /* Max */
void vbap_assist(t_vbap *x, void *b, long m, long a, char *s)
{
	char*mess = "unknown";
	if (m == ASSIST_INLET)
	{
		switch(a)
		{
			case 0 : mess = "bang to calc and output vbap gains. loudspeakers definition"; break;
			case 1 : mess = "panning angle azimuth"; break;
			case 2 : mess = "panning angle elevation"; break;
			case 3 : mess = "spread amount"; break;
			case 4 : mess = "gain control"; break;
		}
	}
	else
	{
		switch(a)
		{
			case 0 : mess = "vbap gains"; break;
			case 1 : mess = "panning angle azimuth"; break;
			case 2 : mess = "panning angle elevation"; break;
			case 3 : mess = "spread amount"; break;
			case 4 : mess = "gain control"; break;
		}
	}
	sprintf(s,mess);
}
#endif /* Max */

/* above are the prototypes for the methods/procedures/functions you will use */
/*--------------------------------------------------------------------------*/
#ifdef PD
void vbap_setup(void)
{
	vbap_class = class_new(gensym("vbap"), (t_newmethod)vbap_new, (t_method) vbap_free, (short)sizeof(t_vbap), 0,
                           A_DEFFLOAT, A_DEFFLOAT, A_DEFFLOAT, 0); 

	class_addbang(vbap_class, (t_method)vbap_bang);	
/* these are for getting data from a cold inlet on Max/MSP, in Pd you use floatinlet_new() in new()
	addftx((t_method)vbap_ft1, 1);
	addftx((t_method)vbap_ft2, 2);
	addftx((t_method)vbap_in3, 3);
	addftx((t_method)vbap_ft4, 4);
*/
	class_addmethod(vbap_class, (t_method)vbap_matrix, gensym("loudspeaker-matrices"), A_GIMME, 0);

	// define_loudspeaker messages
    class_addmethod(vbap_class, (t_method)vbap_def_ls, gensym("define-loudspeakers"), A_GIMME, 0);
    class_addmethod(vbap_class, (t_method)vbap_def_ls, gensym("define_loudspeakers"), A_GIMME, 0);
    class_addmethod(vbap_class, (t_method)def_ls_read_directions, gensym("ls-directions"), A_GIMME, 0);	
    class_addmethod(vbap_class, (t_method)def_ls_read_triplets, gensym("ls-triplets"), A_GIMME, 0);

	logpost(NULL, 1, VBAP_VERSION);
    //post(VBAP_VERSION);

}
#else /* MAX */
void main(void)
{
	setup((t_messlist **)&vbap_class, (method)vbap_new, 0L, (short)sizeof(t_vbap), 0L, 
          A_DEFLONG,A_DEFLONG,A_DEFLONG, 0); 

	addbang((method)vbap_bang);	
	addftx((method)vbap_ft1, 1);
	addftx((method)vbap_ft2, 2);
	addftx((method)vbap_in3, 3);
	addftx((method)vbap_ft4, 4);
	addmess((method)vbap_matrix, "loudspeaker-matrices", A_GIMME, 0);
	addmess((method)traces, "enabletrace", A_LONG, 0);

	// define_loudspeaker messages
	addmess((method)vbap_def_ls, "define-loudspeakers", A_GIMME, 0);
	addmess((method)vbap_def_ls, "define_loudspeakers", A_GIMME, 0);
	addmess((method)def_ls_read_directions, "ls-directions", A_GIMME, 0);	
	addmess((method)def_ls_read_triplets, "ls-triplets", A_GIMME, 0);

	addmess((method)vbap_assist,"assist",A_CANT,0);

	post(VBAP_VERSION);
}

/* these are for getting data from a cold inlet on Max/MSP, in Pd you use floatinlet_new() in new() */
/*--------------------------------------------------------------------------*/
// panning angle azimuth
void vbap_ft1(t_vbap *x, double n) { x->x_azi = (float) n; }
/*--------------------------------------------------------------------------*/
// panning angle elevation
void vbap_ft2(t_vbap *x, double n) { x->x_ele = (float) n; }
/*--------------------------------------------------------------------------*/
// spread amount
void vbap_in3(t_vbap *x, long n) { x->x_spread = (n<0) ? 0 : (n>100) ? 100 : n; }
/*--------------------------------------------------------------------------*/
// gain control
void vbap_ft4(t_vbap *x, double g) { x->x_gain = g; }
#endif /* MAX */

/*--------------------------------------------------------------------------*/
// create new instance of object... 
static void *vbap_new(t_float azi, t_float ele, t_float spread)
{
#ifdef PD
	t_vbap *x = (t_vbap *)newobject(vbap_class);

	floatinlet_new(&x->x_obj, &x->x_azi);
	floatinlet_new(&x->x_obj, &x->x_ele);
	floatinlet_new(&x->x_obj, &x->x_spread);

	x->x_outlet0 = outlet_new(&x->x_obj, &s_float);
	x->x_outlet1 = outlet_new(&x->x_obj, &s_float);
	x->x_outlet2 = outlet_new(&x->x_obj, &s_float);
	x->x_outlet3 = outlet_new(&x->x_obj, &s_float);
    
    
    
    // allocate space for the runtime matricies
//    if (!vbap_getmem(x, MAX_LS_SETS))
//        return( NULL );
//    
    
#else /* Max */
	t_vbap *x = (t_vbap *)newobject(vbap_class);

	floatin(x,4);	
	floatin(x,3);	
	floatin(x,2);					
	floatin(x,1);					

	x->x_outlet4 = floatout(x);
	x->x_outlet3 = floatout(x);
	x->x_outlet2 = floatout(x);
	x->x_outlet1 = floatout(x);
	x->x_outlet0 = listout(x);
#endif /* PD */
	
    x->x_ls_setCount = 0;       // refers to memory dynamically allocated when a define_loudspeakers config is received

    x->x_spread_base[0] = 0.0;
	x->x_spread_base[1] = 1.0;
	x->x_spread_base[2] = 0.0;
	x->x_lsset_available =0;

	x->x_azi = azi;
	x->x_ele = ele;
	x->x_spread = spread;

	return(x);					/* return a reference to the object instance */
}


// currently can allocate upto 256K to support up to 44 channels in 3D
// note:  to save memory, the required memory for a given configuration could instead,  be dynamically allocated by calling this method from the vbap_matrix() method
static int vbap_getmem(t_vbap *x, int lsSetCount )
{

#ifdef PD

    int i;
    
    if ( x->x_ls_setCount ) vbap_free(x);
    
    //was t_float x_set_inv_matx[MAX_LS_SETS][9];
    x->x_set_inv_matx = getbytes( sizeof( t_float* ) * lsSetCount);
    
    if(!x->x_set_inv_matx) {error("vbap_getmem: can't allocate additional %ld bytes", sizeof( t_float* ) * lsSetCount); return(0);}
    
    for (i = 0; i < lsSetCount; i++)
    {
        x->x_set_inv_matx[i] = getbytes( sizeof(t_float) * MATRIX_DIM );
        if(!x->x_set_inv_matx[i]) {error("vbap_getmem: can't allocate additional %ld bytes", sizeof(t_float) * MATRIX_DIM ); return(0);}
    }
    
    
    //was t_float x_set_matx[MAX_LS_SETS][9];
    x->x_set_matx = getbytes( sizeof( t_float* ) * lsSetCount);

    if(!x->x_set_matx) {error("vbap_getmem: can't allocate additional %ld bytes", sizeof( t_float* ) * lsSetCount); return(0);}

    for (i = 0; i < lsSetCount; i++)
    {
        x->x_set_matx[i] = getbytes( sizeof(t_float) * MATRIX_DIM );
        if(!x->x_set_matx[i]) {error("vbap_getmem: can't allocate additional %ld bytes", sizeof(t_float) * MATRIX_DIM ); return(0);}
  }
    
    
    //was long x_lsset[MAX_LS_SETS][3];
    x->x_lsset = getbytes( sizeof( long * ) * lsSetCount);
    
    if(!x->x_lsset) {error("vbap_getmem: can't allocate additional %ld bytes", sizeof( long * ) * lsSetCount); return(0);}
    
    for (i = 0; i < lsSetCount; i++)
    {
        x->x_lsset[i] = getbytes( sizeof( long ) * SPEAKER_SET_DIM );
        if(!x->x_lsset[i]) {error("vbap_getmem: can't allocate additional %ld bytes", sizeof(long) * SPEAKER_SET_DIM ); return(0);}
   }
    
    unsigned long memallocd = 2 * ( sizeof(t_float *) * lsSetCount  *  sizeof(t_float) * MATRIX_DIM) + ( sizeof(long *) * lsSetCount *  sizeof(long) * SPEAKER_SET_DIM);
    
    logpost(NULL, 3, "vbap_new:  %ldK bytes allocated for instance", memallocd /1000);
    
    x->x_ls_setCount = lsSetCount;

#endif
    return(1);
    
}


// free any allocated memory for instance
static void vbap_free(t_vbap *x)
{
    int i;

    if (! x->x_ls_setCount) return;
    
    for (i = 0; i <  x->x_ls_setCount; i++)
    {
        freebytes( x->x_set_inv_matx[i], (sizeof(t_float) * MATRIX_DIM ));    // = getbytes( sizeof(t_float) * MATRIX_DIM );
        freebytes( x->x_set_matx[i],  sizeof(t_float) * MATRIX_DIM);
   }
  
    freebytes(x->x_set_inv_matx, (sizeof( t_float* ) *  x->x_ls_setCount));
    freebytes(x->x_set_matx, sizeof( t_float* ) *  x->x_ls_setCount);


    for (i = 0; i <   x->x_ls_setCount; i++)
    {
        freebytes(x->x_lsset[i], sizeof( long ) * SPEAKER_SET_DIM );
    }
 
    freebytes( x->x_lsset, sizeof( long * ) *  x->x_ls_setCount);
}

static void angle_to_cart(t_float azi, t_float ele, t_float res[3])
// converts angular coordinates to cartesian
{ 
  res[0] = cos(azi * atorad) * cos( ele * atorad);
  res[1] = sin( azi * atorad) * cos( ele * atorad);
  res[2] = sin( ele * atorad);
}

static void cart_to_angle(t_float cvec[3], t_float avec[3])
// converts cartesian coordinates to angular
{
  //float tmp, tmp2, tmp3, tmp4;
  //float power;
  t_float dist, atan_y_per_x, atan_x_pl_y_per_z;
  t_float azi, ele;
  
  if(cvec[0]==0.0)
  	atan_y_per_x = M_PI / 2;
  else
    atan_y_per_x = atan(cvec[1] / cvec[0]);
  azi = atan_y_per_x / atorad;
  if(cvec[0]<0.0)
    azi +=180.0;
  dist = sqrt(cvec[0]*cvec[0] + cvec[1]*cvec[1]);
  if(cvec[2]==0.0)
    atan_x_pl_y_per_z = 0.0;
  else
    atan_x_pl_y_per_z = atan(cvec[2] / dist);
  if(dist == 0.0)
	{
    if(cvec[2]<0.0)
      atan_x_pl_y_per_z = -M_PI/2.0;
    else
      atan_x_pl_y_per_z = M_PI/2.0;
	}
  ele = atan_x_pl_y_per_z / atorad;
  dist = sqrtf(cvec[0] * cvec[0] +cvec[1] * cvec[1] +cvec[2]*cvec[2]);
  avec[0]=azi;
  avec[1]=ele;
  avec[2]=dist;
}


static void vbap(t_float g[3], long ls[3], t_vbap *x)
{
  /* calculates gain factors using loudspeaker setup and given direction */
  t_float power;
  int i,j,k, gains_modified;
  t_float small_g;
  t_float big_sm_g, gtmp[3];
  long winner_set = 0;
  t_float cartdir[3];
  t_float new_cartdir[3];
  t_float new_angle_dir[3];
  long dim = x->x_dimension;
  long neg_g_am, best_neg_g_am;
  
  // transfering the azimuth angle to a decent value
  if(x->x_azi > 360.0 || x->x_azi < -360.0)
    x->x_azi = fmod(x->x_azi, 360.0);
  if(x->x_azi > 180.0)
    x->x_azi -= 360.0;
  if(x->x_azi < -179.0)
    x->x_azi += 360.0;

  	
  // transferring the elevation to a decent value
  if(dim == 3){
    if(x->x_ele > 360.0 || x->x_ele < -360.0)
      x->x_ele = fmod(x->x_ele, 360.0);
    if(x->x_ele > 180.0)
      x->x_ele -= 360.0;
    if(x->x_ele < -179.0)
  	  x->x_ele += 360.0;
  } else
  	x->x_ele = 0.0;
  
  
  // go through all defined loudspeaker sets and find the set which
  // has all positive values. If such is not found, set with largest
  // minimum value is chosen. If at least one of gain factors of one LS set is negative
  // it means that the virtual source does not lie in that LS set. 
  
  angle_to_cart(x->x_azi,x->x_ele,cartdir);
  big_sm_g = -100000.0;   // initial value for largest minimum gain value
  best_neg_g_am=3; 		  // how many negative values in this set
  
  for(i=0;i<x->x_lsset_amount;i++)
	{
    small_g = 10000000.0;
    neg_g_am = 3;
    for(j=0;j<dim;j++)
		{
      gtmp[j]=0.0;
      for(k=0;k<dim;k++)
        gtmp[j]+=cartdir[k]* x->x_set_inv_matx[i][k+j*dim];
      if(gtmp[j] < small_g)
        small_g = gtmp[j];
      if(gtmp[j]>= -0.01)
      	neg_g_am--;
    }
    if(small_g > big_sm_g && neg_g_am <= best_neg_g_am)
		{
      big_sm_g = small_g;
      best_neg_g_am = neg_g_am; 
      winner_set=i;
      g[0]=gtmp[0]; g[1]=gtmp[1];
      ls[0]= x->x_lsset[i][0]; ls[1]= x->x_lsset[i][1];
      if(dim==3)
			{
      	g[2]=gtmp[2];
        ls[2]= x->x_lsset[i][2];
      } 
			else 
			{
        g[2]=0.0;
        ls[2]=0;
      }
    }
  }
  
  // If chosen set produced a negative value, make it zero and
  // calculate direction that corresponds  to these new
  // gain values. This happens when the virtual source is outside of
  // all loudspeaker sets. 
  
  //
  	gains_modified=0;
  	for(i=0;i<dim;i++)
  		if(g[i]<-0.01){
  			g[i]=0.0001;
  			gains_modified=1;
  		}	
 	if(gains_modified==1){
 	 	new_cartdir[0] =  x->x_set_matx[winner_set][0] * g[0] 
 	 					+ x->x_set_matx[winner_set][1] * g[1]
 	 					+ x->x_set_matx[winner_set][2] * g[2];
 	 	new_cartdir[1] =  x->x_set_matx[winner_set][3] * g[0] 
 	 					+ x->x_set_matx[winner_set][4] * g[1] 
 	 					+ x->x_set_matx[winner_set][5] * g[2];
 	 	if(dim==3){
 	 		new_cartdir[2] =  x->x_set_matx[winner_set][6] * g[0] 
 	 						+ x->x_set_matx[winner_set][7] * g[1]
 	 						+ x->x_set_matx[winner_set][8] * g[2];
 	 	} else new_cartdir[2] = 0;
 	 	cart_to_angle(new_cartdir,new_angle_dir);
 	 	x->x_azi = (new_angle_dir[0] );
		//post("[vbap] use azimuth %g",x->x_azi );
 	 	x->x_ele = (new_angle_dir[1]);
 	 }
  //}
  
  power=sqrt(g[0]*g[0] + g[1]*g[1] + g[2]*g[2]);
  g[0] /= power;
  g[1] /= power;
  g[2] /= power;
}


static void vect_cross_prod(t_float v1[3], t_float v2[3],
                t_float v3[3]) 
// vector cross product            
{
  t_float length;
  v3[0] = (v1[1] * v2[2] ) - (v1[2] * v2[1]);
  v3[1] = (v1[2] * v2[0] ) - (v1[0] * v2[2]);
  v3[2] = (v1[0] * v2[1] ) - (v1[1] * v2[0]);

  length= sqrt(v3[0]*v3[0] + v3[1]*v3[1] + v3[2]*v3[2]);
  v3[0] /= length;
  v3[1] /= length;
  v3[2] /= length;
}

static void additive_vbap(t_float *final_gs, t_float cartdir[3], t_vbap *x)
// calculates gains to be added to previous gains, used in
// multiple direction panning (source spreading)
{
	t_float power;
    int i,j,k, gains_modified;
  	t_float small_g;
  	t_float big_sm_g, gtmp[3];
  	long winner_set;
  	//float new_cartdir[3];
  	//float new_angle_dir[3];
  	long dim = x->x_dimension;
  	long neg_g_am, best_neg_g_am;
	t_float g[3] = {0,0,0};
	long ls[3] = {0,0,0};
	
  	big_sm_g = -100000.0;
  	best_neg_g_am=3;
  
  	for(i=0;i<x->x_lsset_amount;i++){
  	  small_g = 10000000.0;
  	  neg_g_am = 3;
  	  for(j=0;j<dim;j++){
  	    gtmp[j]=0.0;
  	    for(k=0;k<dim;k++)
  	      gtmp[j]+=cartdir[k]* x->x_set_inv_matx[i][k+j*dim];
  	    if(gtmp[j] < small_g)
  	      small_g = gtmp[j];
  	    if(gtmp[j]>= -0.01)
  	    	neg_g_am--;
    	}
    	if(small_g > big_sm_g && neg_g_am <= best_neg_g_am){
      	big_sm_g = small_g;
      	best_neg_g_am = neg_g_am; 
      	winner_set=i;
      	g[0]=gtmp[0]; g[1]=gtmp[1];
      	ls[0]= x->x_lsset[i][0]; ls[1]= x->x_lsset[i][1];
      	if(dim==3){
      		g[2]=gtmp[2];
      	  	ls[2]= x->x_lsset[i][2];
      	} else {
      	  	g[2]=0.0;
      	  	ls[2]=0;
      	}
    	}
  	}

  	gains_modified=0;
  	for(i=0;i<dim;i++)
  		if(g[i]<-0.01){
  			gains_modified=1;
  		}
  
  	if(gains_modified != 1){
  		power=sqrt(g[0]*g[0] + g[1]*g[1] + g[2]*g[2]);
  		g[0] /= power;
  		g[1] /= power;
  		g[2] /= power;
  		
  		final_gs[ls[0]-1] += g[0];
  		final_gs[ls[1]-1] += g[1];
  		if (dim==3)
  			final_gs[ls[2]-1] += g[2];
  	}
}


static void new_spread_dir(t_vbap *x, t_float spreaddir[3], t_float vscartdir[3], t_float spread_base[3])
// subroutine for spreading
{
	t_float beta,gamma;
	t_float a,b;
	t_float power;
	
	gamma = acos(vscartdir[0] * spread_base[0] +
					vscartdir[1] * spread_base[1] +
					vscartdir[2] * spread_base[2])/M_PI*180;
	if(fabs(gamma) < 1){
		angle_to_cart(x->x_azi+90.0, 0, spread_base);
		gamma = acos(vscartdir[0] * spread_base[0] +
					vscartdir[1] * spread_base[1] +
					vscartdir[2] * spread_base[2])/M_PI*180;
	}
	beta = 180 - gamma;
	b=sin(x->x_spread * M_PI / 180) / sin(beta * M_PI / 180);
	a=sin((180- x->x_spread - beta) * M_PI / 180) / sin (beta * M_PI / 180);
	spreaddir[0] = a * vscartdir[0] + b * spread_base[0];
	spreaddir[1] = a * vscartdir[1] + b * spread_base[1];
	spreaddir[2] = a * vscartdir[2] + b * spread_base[2];
	
	power=sqrt(spreaddir[0]*spreaddir[0] + spreaddir[1]*spreaddir[1] 
				+ spreaddir[2]*spreaddir[2]);
  	spreaddir[0] /= power;
  	spreaddir[1] /= power;
  	spreaddir[2] /= power;
}

static void new_spread_base(t_vbap *x, t_float spreaddir[3], t_float vscartdir[3])
// subroutine for spreading
{
	t_float d;
	t_float power;
	
	d = cos(x->x_spread/180*M_PI);
	x->x_spread_base[0] = spreaddir[0] - d * vscartdir[0];
	x->x_spread_base[1] = spreaddir[1] - d * vscartdir[1];
	x->x_spread_base[2] = spreaddir[2] - d * vscartdir[2];
	power=sqrt(x->x_spread_base[0]*x->x_spread_base[0] + x->x_spread_base[1]*x->x_spread_base[1] 
				+ x->x_spread_base[2]*x->x_spread_base[2]);
  	x->x_spread_base[0] /= power;
  	x->x_spread_base[1] /= power;
  	x->x_spread_base[2] /= power;
}

static void spread_it(t_vbap *x, t_float *final_gs)
// apply the sound signal to multiple panning directions
// that causes some spreading.
// See theory in paper V. Pulkki "Uniform spreading of amplitude panned
// virtual sources" in WASPAA 99

{
	t_float vscartdir[3];
	t_float spreaddir[16][3];
	t_float spreadbase[16][3];
	long i, spreaddirnum;
	t_float power;
	if(x->x_dimension == 3){
		spreaddirnum=16;
		angle_to_cart(x->x_azi,x->x_ele,vscartdir);
		new_spread_dir(x, spreaddir[0], vscartdir, x->x_spread_base);
		new_spread_base(x, spreaddir[0], vscartdir);
		vect_cross_prod(x->x_spread_base, vscartdir, spreadbase[1]); // four orthogonal dirs
		vect_cross_prod(spreadbase[1], vscartdir, spreadbase[2]);
		vect_cross_prod(spreadbase[2], vscartdir, spreadbase[3]);
	
		// four between them
		for(i=0;i<3;i++) spreadbase[4][i] =  (x->x_spread_base[i] + spreadbase[1][i]) / 2.0;
		for(i=0;i<3;i++) spreadbase[5][i] =  (spreadbase[1][i] + spreadbase[2][i]) / 2.0;
		for(i=0;i<3;i++) spreadbase[6][i] =  (spreadbase[2][i] + spreadbase[3][i]) / 2.0;
		for(i=0;i<3;i++) spreadbase[7][i] =  (spreadbase[3][i] + x->x_spread_base[i]) / 2.0;
		
		// four at half spreadangle
		for(i=0;i<3;i++) spreadbase[8][i] =  (vscartdir[i] + x->x_spread_base[i]) / 2.0;
		for(i=0;i<3;i++) spreadbase[9][i] =  (vscartdir[i] + spreadbase[1][i]) / 2.0;
		for(i=0;i<3;i++) spreadbase[10][i] =  (vscartdir[i] + spreadbase[2][i]) / 2.0;
		for(i=0;i<3;i++) spreadbase[11][i] =  (vscartdir[i] + spreadbase[3][i]) / 2.0;
		
		// four at quarter spreadangle
		for(i=0;i<3;i++) spreadbase[12][i] =  (vscartdir[i] + spreadbase[8][i]) / 2.0;
		for(i=0;i<3;i++) spreadbase[13][i] =  (vscartdir[i] + spreadbase[9][i]) / 2.0;
		for(i=0;i<3;i++) spreadbase[14][i] =  (vscartdir[i] + spreadbase[10][i]) / 2.0;
		for(i=0;i<3;i++) spreadbase[15][i] =  (vscartdir[i] + spreadbase[11][i]) / 2.0;
		
		additive_vbap(final_gs,spreaddir[0],x); 
		for(i=1;i<spreaddirnum;i++){
			new_spread_dir(x, spreaddir[i], vscartdir, spreadbase[i]);
			additive_vbap(final_gs,spreaddir[i],x); 
		}
	} else if (x->x_dimension == 2) {
		spreaddirnum=6;		
		
		angle_to_cart(x->x_azi - x->x_spread, 0, spreaddir[0]);
		angle_to_cart(x->x_azi - x->x_spread/2, 0, spreaddir[1]);
		angle_to_cart(x->x_azi - x->x_spread/4, 0, spreaddir[2]);
		angle_to_cart(x->x_azi + x->x_spread/4, 0, spreaddir[3]);
		angle_to_cart(x->x_azi + x->x_spread/2, 0, spreaddir[4]);
		angle_to_cart(x->x_azi + x->x_spread, 0, spreaddir[5]);
		
		for(i=0;i<spreaddirnum;i++)
			additive_vbap(final_gs,spreaddir[i],x); 
	} else
		return;
		
	if(x->x_spread > 70)
		for(i=0;i<x->x_ls_amount;i++){
			final_gs[i] += (x->x_spread - 70) / 30.0 * (x->x_spread - 70) / 30.0 * 10.0;
		}
	
	for(i=0,power=0.0;i<x->x_ls_amount;i++){
		power += final_gs[i] * final_gs[i];
	}
		
	power = sqrt(power);
	for(i=0;i<x->x_ls_amount;i++){
		final_gs[i] /= power;
	}
}	
	

static void vbap_bang(t_vbap *x)			
// top level, vbap gains are calculated and outputted	
{
	Atom at[MAX_LS_AMOUNT]; 
	t_float g[3];
	long ls[3];
	long i;
 
	t_float *final_gs = (t_float *) getbytes(x->x_ls_amount * sizeof(t_float));

	if(x->x_lsset_available ==1)
	{
		vbap(g,ls, x);
		for(i=0;i<x->x_ls_amount;i++)
			final_gs[i]=0.0; 			
		for(i=0;i<x->x_dimension;i++)
		{
			final_gs[ls[i]-1]=g[i];
            //post("VBAP: PRE_SPREAD: %f", (t_float)final_gs[i]);
		}
		if(x->x_spread != 0)
		{
			spread_it(x,final_gs);
		}
		for(i=0;i<x->x_ls_amount;i++) 
		{
#ifdef PD
            

            SETFLOAT(&at[0], (t_float)i);
			SETFLOAT(&at[1], (t_float)final_gs[i]);
			outlet_list(x->x_obj.ob_outlet, &s_list, 2, at);
#else /* Max */
			SETLONG(&at[0], i);	
			SETFLOAT(&at[1], final_gs[i]*x->x_gain); // freeverb gain is applied here
			outlet_list(x->x_outlet0, 0L, 2, at);
#endif /* PD */
		}
		outlet_float(x->x_outlet1, x->x_azi); 
		outlet_float(x->x_outlet2, x->x_ele); 
		outlet_int(x->x_outlet3, x->x_spread); 
		//outlet_int(x->x_outlet4, x->x_gain); 
	}
	else
		error("vbap: Configure loudspeakers first!");

	freebytes(final_gs, x->x_ls_amount * sizeof(t_float)); // bug fix added 9/00
}

/*--------------------------------------------------------------------------*/

static void vbap_matrix(t_vbap *x, Symbol *s, int ac, Atom *av)
// read in loudspeaker matrices
{
	int datapointer = 0; 
 	if(ac>0) 
	{
		int d = 0;
 		/*if(av[datapointer].a_type == A_LONG) d = av[datapointer++].a_w.w_long;
		else*/
        if (av[datapointer].a_type == A_FLOAT)
            d = (long)av[datapointer++].a_w.w_float;
		else
        {
            error("vbap: Dimension NaN"); x->x_lsset_available=0;
            return;
        }

		if (d!=2 && d!=3) { error("vbap %s: Dimension can be only 2 or 3",s->s_name); x->x_lsset_available=0; return; }

		x->x_dimension = d;
		x->x_lsset_available=1;
	}
 	else { error("vbap %s: bad empty parameter list",s->s_name); x->x_lsset_available=0; return; }

	if(ac>1) 
	{
		long a = 0;
 		/*if(av[datapointer].a_type == A_LONG) a = av[datapointer++].a_w.w_long;
		else*/ if(av[datapointer].a_type == A_FLOAT) a = (long) av[datapointer++].a_w.w_float;
		else { error("vbap: ls_amount NaN");  x->x_lsset_available=0; return; }

		x->x_ls_amount = a;
	}

	long counter = (ac - 2) / ((x->x_dimension * x->x_dimension*2) + x->x_dimension);
    
    
 
    if (counter-1 > MAX_LS_SETS) { error("vbap %s: loudspeaker definitions exceed maximum number of speakers",s->s_name); x->x_lsset_available=0; return; }

    vbap_getmem(x, counter);        // PD only:  allocate memory (frees any previously allocated memory automatically)
    
    x->x_lsset_amount=counter;
    

 	if(counter==0) { error("vbap %s: not enough parameters",s->s_name); x->x_lsset_available=0; return; }
 	
	long setpointer=0;
	long i;
    
    long db_dim = x->x_dimension;
    
    while(counter-- > 0)
	{
 
        for(i=0; i < x->x_dimension; i++)
		{
# ifdef PD
            
            if(av[datapointer].a_type == A_FLOAT)
			{
                x->x_lsset[setpointer][i]=(long)av[datapointer++].a_w.w_float;
  			}
 			else { error("vbap AA %s: param %d is not a float",s->s_name,datapointer); x->x_lsset_available=0; return; }

            
            
# else /* Max */
 			if(av[datapointer].a_type == A_LONG)
			{
 				 x->x_lsset[setpointer][i]=av[datapointer++].a_w.w_long;
 			}
 			else { error("vbap %s: param %d is not an in",s->s_name,datapointer); x->x_lsset_available=0; return; }
# endif /* PD */
 		}	

 		
        for(i=0; i < x->x_dimension*x->x_dimension; i++)
		{

            if(av[datapointer].a_type == A_FLOAT)
			{
 				x->x_set_inv_matx[setpointer][i]=av[datapointer++].a_w.w_float;
 			}
 			else { error("vbap BB %s: param %d is not a float",s->s_name,datapointer); x->x_lsset_available=0; return; }
 		}
 		

 		for(i=0; i < x->x_dimension*x->x_dimension; i++)
		{
            
            
 			if(av[datapointer].a_type == A_FLOAT)
			{
 				x->x_set_matx[setpointer][i]=av[datapointer++].a_w.w_float;
 			}
 			else {
                error("vbap %s: param %d is not a float",s->s_name,datapointer); x->x_lsset_available=0;
                 return;
            }
 			
 		}
	
 		setpointer++;
	}
	if (_enable_trace) post("vbap: Loudspeaker setup configured!");
 }