aboutsummaryrefslogtreecommitdiff
path: root/vbap.c
blob: 507ef39456a8ed064bfb6d5fa24541c6e2d0f32e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
/* vbap.c vers 0.99 for max4.0

written by Ville Pulkki 1999-2001
Helsinki University of Technology 
and 
Unversity of California at Berkeley

See copyright in file with name COPYRIGHT  */

#ifdef NT
#define sqrtf sqrt
#endif

#include <math.h>
#include "m_pd.h"				/* you must include this - it contains the external object's link to pure data */

#define RES_ID 9171 				/* resource ID for assistance (we'll add that later) */
#define MAX_LS_SETS 100				/* maximum number of loudspeaker sets (triplets or pairs) allowed */
#define MAX_LS_AMOUNT 55			/* maximum amount of loudspeakers, can be increased */

typedef struct vbap				/* This defines the object as an entity made up of other things */
{
	t_object x_ob;				
	t_float x_azi; 				/* panning direction azimuth */
	t_float x_ele;				/* panning direction elevation */
	void *x_outlet0;			/* outlet creation - inlets are automatic */
	void *x_outlet1;				
	void *x_outlet2;				
	void *x_outlet3;				
	float x_set_inv_matx[MAX_LS_SETS][9];  /* inverse matrice for each loudspeaker set */
	float x_set_matx[MAX_LS_SETS][9];      /* matrice for each loudspeaker set */
	long x_lsset[MAX_LS_SETS][3];          /* channel numbers of loudspeakers in each LS set */
	long x_lsset_available;			/* have loudspeaker sets been defined with define_loudspeakers */
	long x_lsset_amount;			/* amount of loudspeaker sets */
	long x_ls_amount;                      /* amount of loudspeakers */
	long x_dimension;                      /* 2 or 3 */
	t_float x_spread;                         /* speading amount of virtual source (0-100) */
	float x_spread_base[3];                /* used to create uniform spreading */
} t_vbap;

/* Globals */

void new_spread_dir(t_vbap *x, float spreaddir[3], float vscartdir[3], float spread_base[3]);
void new_spread_base(t_vbap *x, float spreaddir[3], float vscartdir[3]);
static t_class *vbap_class;				
void cross_prod(float v1[3], float v2[3],
                float v3[3]);
void additive_vbap(float *final_gs, float cartdir[3], t_vbap *x);
void vbap_bang(t_vbap *x);
void vbap_int(t_vbap *x, t_float n);
void vbap_matrix(t_vbap *x, t_symbol *s, int ac, t_atom *av);
void vbap_in1(t_vbap *x, long n);
void vbap_in2(t_vbap *x, long n);
void vbap_in3(t_vbap *x, long n);
void spread_it(t_vbap *x, float *final_gs);
static void *vbap_new(t_symbol *s, int ac, t_atom *av); /* using A_GIMME - typed message list */
void vbap(float g[3], long ls[3], t_vbap *x);
void angle_to_cart(long azi, long ele, float res[3]);
void cart_to_angle(float cvec[3], float avec[3]);

/* above are the prototypes for the methods/procedures/functions you will use */

void vbap_setup(void)
{
	vbap_class = class_new(gensym("vbap"), (t_newmethod)vbap_new, 0, (short)sizeof(t_vbap), 0, A_GIMME, 0); 
	/* vbap_new = creation function, A_DEFLONG = its (optional) arguement is a long (32-bit) int */

/* max methods ... */
/*
/*	addbang((method)vbap_bang);			/* the procedure it uses when it gets a bang in the left inlet */
/*	addint((method)vbap_int);			/* the rocedure for an int in the left inlet (inlet 0) */
/*	addinx((method)vbap_in1, 1);		/* the rocedure for an int in the right inlet (inlet 1) */
/*	addinx((method)vbap_in2, 2);		/* the rocedure for an int in the right inlet (inlet 2) */
/*	addinx((method)vbap_in3, 3);
/*	addmess((method)vbap_matrix, "loudspeaker-matrices", A_GIMME, 0); */

/* pure data: */

	class_addbang(vbap_class, vbap_bang);
	class_addfloat(vbap_class, vbap_int);
	class_addmethod(vbap_class, (t_method)vbap_matrix, gensym("loudspeaker-matrices"), A_GIMME, 0);
}


void angle_to_cart(long azi, long ele, float res[3])
/* converts angular coordinates to cartesian */
{ 
  float atorad = (2 * 3.1415927 / 360) ;
  res[0] = cos((float) azi * atorad) * cos((float) ele * atorad);
  res[1] = sin((float) azi * atorad) * cos((float) ele * atorad);
  res[2] = sin((float) ele * atorad);
}

void cart_to_angle(float cvec[3], float avec[3])
/* converts cartesian coordinates to angular */
{
  float tmp, tmp2, tmp3, tmp4;
  float atorad = (2 * 3.1415927 / 360) ;
  float pi =  3.1415927;
  float power;
  float dist, atan_y_per_x, atan_x_pl_y_per_z;
  float azi, ele;
  
  if(cvec[0]==0.0)
  	atan_y_per_x = pi / 2;
  else
    atan_y_per_x = atan(cvec[1] / cvec[0]);
  azi = atan_y_per_x / atorad;
  if(cvec[0]<0.0)
    azi +=180;
  dist = sqrt(cvec[0]*cvec[0] + cvec[1]*cvec[1]);
  if(cvec[2]==0.0)
    atan_x_pl_y_per_z = 0.0;
  else
    atan_x_pl_y_per_z = atan(cvec[2] / dist);
  if(dist == 0.0)
    if(cvec[2]<0.0)
      atan_x_pl_y_per_z = -pi/2.0;
    else
      atan_x_pl_y_per_z = pi/2.0;
  ele = atan_x_pl_y_per_z / atorad;
  dist = sqrtf(cvec[0] * cvec[0] +cvec[1] * cvec[1] +cvec[2]*cvec[2]);
  avec[0]=azi;
  avec[1]=ele;
  avec[2]=dist;
}


void vbap(float g[3], long ls[3], t_vbap *x)
{
  /* calculates gain factors using loudspeaker setup and given direction */
  float power;
  int i,j,k, gains_modified;
  float small_g;
  float big_sm_g, gtmp[3];
  long winner_set;
  float cartdir[3];
  float new_cartdir[3];
  float new_angle_dir[3];
  long dim = x->x_dimension;
  long neg_g_am, best_neg_g_am;
  
  /* transfering the azimuth angle to a decent value */
  while(x->x_azi > 180)
  	x->x_azi -= 360;
  while(x->x_azi < -179)
  	x->x_azi += 360;
  	
  /* transferring the elevation to a decent value */
  if(dim == 3){
  	while(x->x_ele > 180)
  		x->x_ele -= 360;
  	while(x->x_ele < -179)
  		x->x_ele += 360;
  } else
  	x->x_ele = 0;
  
  
  /* go through all defined loudspeaker sets and find the set which
  // has all positive values. If such is not found, set with largest
  // minimum value is chosen. If at least one of gain factors of one LS set is negative
  // it means that the virtual source does not lie in that LS set. */
  
  angle_to_cart(x->x_azi,x->x_ele,cartdir);
  big_sm_g = -100000.0;   /* initial value for largest minimum gain value */
  best_neg_g_am=3; 		  /* how many negative values in this set */
  
  
  for(i=0;i<x->x_lsset_amount;i++){
    small_g = 10000000.0;
    neg_g_am = 3;
    for(j=0;j<dim;j++){
      gtmp[j]=0.0;
      for(k=0;k<dim;k++)
        gtmp[j]+=cartdir[k]* x->x_set_inv_matx[i][k+j*dim];
      if(gtmp[j] < small_g)
        small_g = gtmp[j];
      if(gtmp[j]>= -0.01)
      	neg_g_am--;
    }
    if(small_g > big_sm_g && neg_g_am <= best_neg_g_am){
      big_sm_g = small_g;
      best_neg_g_am = neg_g_am; 
      winner_set=i;
      g[0]=gtmp[0]; g[1]=gtmp[1];
      ls[0]= x->x_lsset[i][0]; ls[1]= x->x_lsset[i][1];
      if(dim==3){
      	g[2]=gtmp[2];
        ls[2]= x->x_lsset[i][2];
      } else {
        g[2]=0.0;
        ls[2]=0;
      }
    }
  }
  
  /* If chosen set produced a negative value, make it zero and
  // calculate direction that corresponds  to these new
  // gain values. This happens when the virtual source is outside of
  // all loudspeaker sets. */
  
  if(dim==3){
  	gains_modified=0;
  	for(i=0;i<dim;i++)
  		if(g[i]<-0.01){
  			g[i]=0.0001;
  			gains_modified=1;
  		}	
 	if(gains_modified==1){
 	 	new_cartdir[0] =  x->x_set_matx[winner_set][0] * g[0] 
 	 					+ x->x_set_matx[winner_set][1] * g[1]
 	 					+ x->x_set_matx[winner_set][2] * g[2];
 	 	new_cartdir[1] =  x->x_set_matx[winner_set][3] * g[0] 
 	 					+ x->x_set_matx[winner_set][4] * g[1] 
 	 					+ x->x_set_matx[winner_set][5] * g[2];
 	 	new_cartdir[2] =  x->x_set_matx[winner_set][6] * g[0] 
 	 					+ x->x_set_matx[winner_set][7] * g[1]
 	 					+ x->x_set_matx[winner_set][8] * g[2];
 	 	cart_to_angle(new_cartdir,new_angle_dir);
 	 	x->x_azi = (long) (new_angle_dir[0] + 0.5);
 	 	x->x_ele = (long) (new_angle_dir[1] + 0.5);
 	 }
  }
  
  power=sqrt(g[0]*g[0] + g[1]*g[1] + g[2]*g[2]);
  g[0] /= power;
  g[1] /= power;
  g[2] /= power;
}


void cross_prod(float v1[3], float v2[3],
                float v3[3]) 
/* vector cross product */
{
  float length;
  v3[0] = (v1[1] * v2[2] ) - (v1[2] * v2[1]);
  v3[1] = (v1[2] * v2[0] ) - (v1[0] * v2[2]);
  v3[2] = (v1[0] * v2[1] ) - (v1[1] * v2[0]);

  length= sqrt(v3[0]*v3[0] + v3[1]*v3[1] + v3[2]*v3[2]);
  v3[0] /= length;
  v3[1] /= length;
  v3[2] /= length;
}

void additive_vbap(float *final_gs, float cartdir[3], t_vbap *x)
/* calculates gains to be added to previous gains, used in
// multiple direction panning (source spreading) */
{
	float power;
    int i,j,k, gains_modified;
  	float small_g;
  	float big_sm_g, gtmp[3];
  	long winner_set;
  	float new_cartdir[3];
  	float new_angle_dir[3];
  	long dim = x->x_dimension;
  	long neg_g_am, best_neg_g_am;
	float g[3];
	long ls[3];
	
  	big_sm_g = -100000.0;
  	best_neg_g_am=3;
  
  	for(i=0;i<x->x_lsset_amount;i++){
  	  small_g = 10000000.0;
  	  neg_g_am = 3;
  	  for(j=0;j<dim;j++){
  	    gtmp[j]=0.0;
  	    for(k=0;k<dim;k++)
  	      gtmp[j]+=cartdir[k]* x->x_set_inv_matx[i][k+j*dim];
  	    if(gtmp[j] < small_g)
  	      small_g = gtmp[j];
  	    if(gtmp[j]>= -0.01)
  	    	neg_g_am--;
    	}
    	if(small_g > big_sm_g && neg_g_am <= best_neg_g_am){
      	big_sm_g = small_g;
      	best_neg_g_am = neg_g_am; 
      	winner_set=i;
      	g[0]=gtmp[0]; g[1]=gtmp[1];
      	ls[0]= x->x_lsset[i][0]; ls[1]= x->x_lsset[i][1];
      	if(dim==3){
      		g[2]=gtmp[2];
      	  	ls[2]= x->x_lsset[i][2];
      	} else {
      	  	g[2]=0.0;
      	  	ls[2]=0;
      	}
    	}
  	}

  	gains_modified=0;
  	for(i=0;i<dim;i++)
  		if(g[i]<-0.01){
  			gains_modified=1;
  		}
  
  	if(gains_modified != 1){
  		power=sqrt(g[0]*g[0] + g[1]*g[1] + g[2]*g[2]);
  		g[0] /= power;
  		g[1] /= power;
  		g[2] /= power;
  		
  		final_gs[ls[0]-1] += g[0];
  		final_gs[ls[1]-1] += g[1];
  		final_gs[ls[2]-1] += g[2];
  	}
}


void new_spread_dir(t_vbap *x, float spreaddir[3], float vscartdir[3], float spread_base[3])
/* subroutine for spreading */
{
	float beta,gamma;
	float a,b;
	float pi = 3.1415927;
	float power;
	
	gamma = acos(vscartdir[0] * spread_base[0] +
					vscartdir[1] * spread_base[1] +
					vscartdir[2] * spread_base[2])/pi*180;
	if(fabs(gamma) < 1){
		angle_to_cart(x->x_azi+90, 0, spread_base);
		gamma = acos(vscartdir[0] * spread_base[0] +
					vscartdir[1] * spread_base[1] +
					vscartdir[2] * spread_base[2])/pi*180;
	}
	beta = 180 - gamma;
	b=sin(x->x_spread * pi / 180) / sin(beta * pi / 180);
	a=sin((180- x->x_spread - beta) * pi / 180) / sin (beta * pi / 180);
	spreaddir[0] = a * vscartdir[0] + b * spread_base[0];
	spreaddir[1] = a * vscartdir[1] + b * spread_base[1];
	spreaddir[2] = a * vscartdir[2] + b * spread_base[2];
	
	power=sqrt(spreaddir[0]*spreaddir[0] + spreaddir[1]*spreaddir[1] 
				+ spreaddir[2]*spreaddir[2]);
  	spreaddir[0] /= power;
  	spreaddir[1] /= power;
  	spreaddir[2] /= power;
}

void new_spread_base(t_vbap *x, float spreaddir[3], float vscartdir[3])
/* subroutine for spreading */
{
	float d;
	float pi = 3.1415927;
	float power;
	
	d = cos(x->x_spread/180*pi);
	x->x_spread_base[0] = spreaddir[0] - d * vscartdir[0];
	x->x_spread_base[1] = spreaddir[1] - d * vscartdir[1];
	x->x_spread_base[2] = spreaddir[2] - d * vscartdir[2];
	power=sqrt(x->x_spread_base[0]*x->x_spread_base[0] + x->x_spread_base[1]*x->x_spread_base[1] 
				+ x->x_spread_base[2]*x->x_spread_base[2]);
  	x->x_spread_base[0] /= power;
  	x->x_spread_base[1] /= power;
  	x->x_spread_base[2] /= power;
}

void spread_it(t_vbap *x, float *final_gs)
/*
// apply the sound signal to multiple panning directions
// that causes some spreading.
// See theory in paper V. Pulkki "Uniform spreading of amplitude panned
// virtual sources" in WASPAA 99
*/
{
	float vscartdir[3];
	float spreaddir[16][3];
	float spreadbase[16][3];
	long i, spreaddirnum;
	float power;
	if(x->x_dimension == 3){
		spreaddirnum=16;
		angle_to_cart(x->x_azi,x->x_ele,vscartdir);
		new_spread_dir(x, spreaddir[0], vscartdir, x->x_spread_base);
		new_spread_base(x, spreaddir[0], vscartdir);
		cross_prod(x->x_spread_base, vscartdir, spreadbase[1]); /* four orthogonal dirs */
		cross_prod(spreadbase[1], vscartdir, spreadbase[2]);
		cross_prod(spreadbase[2], vscartdir, spreadbase[3]);
	
		/* four between them */
		for(i=0;i<3;i++) spreadbase[4][i] =  (x->x_spread_base[i] + spreadbase[1][i]) / 2.0;
		for(i=0;i<3;i++) spreadbase[5][i] =  (spreadbase[1][i] + spreadbase[2][i]) / 2.0;
		for(i=0;i<3;i++) spreadbase[6][i] =  (spreadbase[2][i] + spreadbase[3][i]) / 2.0;
		for(i=0;i<3;i++) spreadbase[7][i] =  (spreadbase[3][i] + x->x_spread_base[i]) / 2.0;
		
		/* four at half spreadangle */
		for(i=0;i<3;i++) spreadbase[8][i] =  (vscartdir[i] + x->x_spread_base[i]) / 2.0;
		for(i=0;i<3;i++) spreadbase[9][i] =  (vscartdir[i] + spreadbase[1][i]) / 2.0;
		for(i=0;i<3;i++) spreadbase[10][i] =  (vscartdir[i] + spreadbase[2][i]) / 2.0;
		for(i=0;i<3;i++) spreadbase[11][i] =  (vscartdir[i] + spreadbase[3][i]) / 2.0;
		
		/* four at quarter spreadangle */
		for(i=0;i<3;i++) spreadbase[12][i] =  (vscartdir[i] + spreadbase[8][i]) / 2.0;
		for(i=0;i<3;i++) spreadbase[13][i] =  (vscartdir[i] + spreadbase[9][i]) / 2.0;
		for(i=0;i<3;i++) spreadbase[14][i] =  (vscartdir[i] + spreadbase[10][i]) / 2.0;
		for(i=0;i<3;i++) spreadbase[15][i] =  (vscartdir[i] + spreadbase[11][i]) / 2.0;
		
		additive_vbap(final_gs,spreaddir[0],x); 
		for(i=1;i<spreaddirnum;i++){
			new_spread_dir(x, spreaddir[i], vscartdir, spreadbase[i]);
			additive_vbap(final_gs,spreaddir[i],x); 
		}
	} else if (x->x_dimension == 2) {
		spreaddirnum=6;		
		
		angle_to_cart(x->x_azi - x->x_spread, 0, spreaddir[0]);
		angle_to_cart(x->x_azi - x->x_spread/2, 0, spreaddir[1]);
		angle_to_cart(x->x_azi - x->x_spread/4, 0, spreaddir[2]);
		angle_to_cart(x->x_azi + x->x_spread/4, 0, spreaddir[3]);
		angle_to_cart(x->x_azi + x->x_spread/2, 0, spreaddir[4]);
		angle_to_cart(x->x_azi + x->x_spread, 0, spreaddir[5]);
		
		for(i=0;i<spreaddirnum;i++)
			additive_vbap(final_gs,spreaddir[i],x); 
	} else
		return;
		
	if(x->x_spread > 70)
		for(i=0;i<x->x_ls_amount;i++){
			final_gs[i] += (x->x_spread - 70) / 30.0 * (x->x_spread - 70) / 30.0 * 10.0;
		}
	
	for(i=0,power=0.0;i<x->x_ls_amount;i++){
		power += final_gs[i] * final_gs[i];
	}
		
	power = sqrt(power);
	for(i=0;i<x->x_ls_amount;i++){
		final_gs[i] /= power;
	}
}	
	

void vbap_bang(t_vbap *x)			
/* top level, vbap gains are calculated and outputted */
{
	t_atom at[MAX_LS_AMOUNT]; 
	float g[3];
	long ls[3];
	long i;
	float *final_gs;
	
	final_gs = (float *) getbytes(x->x_ls_amount * sizeof(float));
	if(x->x_lsset_available ==1){
		vbap(g,ls, x);
		for(i=0;i<x->x_ls_amount;i++)
			final_gs[i]=0.0; 			
		for(i=0;i<x->x_dimension;i++){
			final_gs[ls[i]-1]=g[i];  
			}
		if(x->x_spread != 0){
			spread_it(x,final_gs);
		}
		for(i=0;i<x->x_ls_amount;i++) {
			SETFLOAT(&at[0], (t_float)i);	
			SETFLOAT(&at[1], (t_float)final_gs[i]);
			outlet_list(x->x_outlet0, gensym("list") /* was: 0L */, 2, at);
		}
		outlet_float(x->x_outlet1, x->x_azi); 
		outlet_float(x->x_outlet2, x->x_ele); 
		outlet_float(x->x_outlet3, x->x_spread); 
	}
	else
		post("vbap: Configure loudspeakers first!",0);
/*	freebytes(final_gs, x->x_ls_amount * sizeof(float)); /* bug fix added 9/00 */
}

/*--------------------------------------------------------------------------*/

void vbap_int(t_vbap *x, t_float n) /* x = the instance of the object, n = the int received in the right inlet */
{
 /* do something if an int comes in the left inlet??? */
}

void vbap_matrix(t_vbap *x, t_symbol *s, int ac, t_atom *av)
/* read in loudspeaker matrices */
{
	long counter;
	long datapointer=0;
	long setpointer=0;
	long i;
	long deb=0;
 
 	if(ac>0) 
/* 		if(av[datapointer].a_type == A_LONG){
 			x->x_dimension = av[datapointer++].a_w.w_long;
 			x->x_lsset_available=1;
 		} else */
 		if(av[datapointer].a_type == A_FLOAT){
 			x->x_dimension = (long) av[datapointer++].a_w.w_float;
 			x->x_lsset_available=1;
 		} else {
 			post("Error in loudspeaker data!",0);
 			x->x_lsset_available=0;
 			return;
 		}
/* 	post("%d",deb++); */
 	if(ac>1) 
/* 		if(av[datapointer].a_type == A_LONG)
 			x->x_ls_amount = av[datapointer++].a_w.w_long;
 		else */
 		if(av[datapointer].a_type == A_FLOAT)
 			x->x_ls_amount = (long) av[datapointer++].a_w.w_float;
 		else {
 			post("vbap: Error in loudspeaker data!",0);
 			x->x_lsset_available=0;
 			return;
 		}
 	else
 		x->x_lsset_available=0;
 	
/* 	post("%d",deb++); */
 	if(x->x_dimension == 3)
 		counter = (ac - 2) / ((x->x_dimension * x->x_dimension*2) + x->x_dimension);
 	if(x->x_dimension == 2)
 		counter = (ac - 2) / ((x->x_dimension * x->x_dimension) + x->x_dimension);
 	x->x_lsset_amount=counter;

 	if(counter<=0){
 		post("vbap: Error in loudspeaker data!",0);
 		x->x_lsset_available=0;
 		return;
 	}
 	
 
 	while(counter-- > 0){
 		for(i=0; i < x->x_dimension; i++){
 			if(av[datapointer].a_type == A_FLOAT){
 				 x->x_lsset[setpointer][i]=(long)av[datapointer++].a_w.w_float;
/* 				post("%d",deb++); */
 			}
 			else{
 				post("vbap: Error in loudspeaker data!",0);
 				x->x_lsset_available=0;
 				return;
 			}
 		}	

 		for(i=0; i < x->x_dimension*x->x_dimension; i++){
 			if(av[datapointer].a_type == A_FLOAT){
 				x->x_set_inv_matx[setpointer][i]=av[datapointer++].a_w.w_float;
/* 				post("%d",deb++); */
 			}
 			else {
 				post("vbap: Error in loudspeaker data!",0);
 				x->x_lsset_available=0;
 				return;
 			}
 		}
 		if(x->x_dimension == 3){ 
 			for(i=0; i < x->x_dimension*x->x_dimension; i++){
 				if(av[datapointer].a_type == A_FLOAT){
 					x->x_set_matx[setpointer][i]=av[datapointer++].a_w.w_float;
/* 					post("%d",deb++); */
 				}
 				else {
 					post("vbap: Error in loudspeaker data!",0);
 					x->x_lsset_available=0;
 					return;
 				}
 			}
 		}
 	
 		setpointer++;
	}
	post("vbap: Loudspeaker setup configured!",0);
}

void vbap_in1(t_vbap *x, long n)				/* x = the instance of the object, n = the int received in the right inlet */
/* panning angle azimuth */
{
	x->x_azi = n;							/* store n in a global variable */
	
}

void vbap_in2(t_vbap *x, long n)				/* x = the instance of the object, n = the int received in the right inlet */
/* panning angle elevation */
{
	x->x_ele = n;							/* store n in a global variable */

}
/*--------------------------------------------------------------------------*/

void vbap_in3(t_vbap *x, long n)				/* x = the instance of the object, n = the int received in the right inlet */
/* spread amount */
{
	if (n<0) n = 0;
	if (n>100) n = 100;
	x->x_spread = n;							/* store n in a global variable */
	
}


static void *vbap_new(t_symbol *s, int ac, t_atom *av)	
/* create new instance of object... MUST send it an int even if you do nothing with this int!! */
{
	t_vbap *x;
	x = (t_vbap *)pd_new(vbap_class);

/* MAX:	
/*	intin(x,3);	
/*	intin(x,2);					/* create a second (int) inlet... remember right-to-left ordering in Max */
/*	intin(x,1);					/* create a second (int) inlet... remember right-to-left ordering in Max */
/*	x->x_outlet3 = intout(x);
/*	x->x_outlet2 = intout(x);	/* create an (int) outlet  - rightmost outlet first... */
/*	x->x_outlet1 = intout(x);	/* create an (int) outlet */
/*	x->x_outlet0 = listout(x);	/* create a (list) outlet */
/*
/* pure data: */

	floatinlet_new(&x->x_ob, &x->x_azi);
	floatinlet_new(&x->x_ob, &x->x_ele);
	floatinlet_new(&x->x_ob, &x->x_spread);

	x->x_outlet0 = outlet_new(&x->x_ob, gensym("list"));
	x->x_outlet1 = outlet_new(&x->x_ob, gensym("float"));	
	x->x_outlet2 = outlet_new(&x->x_ob, gensym("float"));	
	x->x_outlet3 = outlet_new(&x->x_ob, gensym("float"));	

/* - */

	
	x->x_azi = 0;
	x->x_ele = 0;
	x->x_spread_base[0] = 0.0;
	x->x_spread_base[1] = 1.0;
	x->x_spread_base[2] = 0.0;
	x->x_spread = 0;
	x->x_lsset_available =0;
	if (ac>0) {
/*		if (av[0].a_type == A_LONG)
			x->x_azi = av[0].a_w.w_long;
		else */
		if (av[0].a_type == A_FLOAT)
			x->x_azi = (long)av[0].a_w.w_float;		
	}
	if (ac>1) {
/*		if (av[1].a_type == A_LONG)
			x->x_ele = av[1].a_w.w_long;
		else */
		if (av[1].a_type == A_FLOAT)
			x->x_ele = (long)av[1].a_w.w_float;	
	}
	return(x);					/* return a reference to the object instance */
}