1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
|
/******************************************************
*
* zexy - implementation file
*
* copyleft (c) IOhannes m zmölnig
*
* 1999:forum::für::umläute:2004
*
* institute of electronic music and acoustics (iem)
*
******************************************************
*
* license: GNU General Public License v.2
******************************************************/
/*
step~ : will make a unity step at a desired point in the signal-vector; the second input specifies a
length: after the so-specified time has elapsed, the step will toggle back to the previous
value;
the length can be passed as an argument when creating the object
with length==1 you might do the dirac~ thing a little bit more complicated
with length==0 the output just toggles between 0 and 1 every time you bang the object
NOTE : the inlets do NOT specify any times but sample-NUMBERS; there are 64 samples in a signal-vector,
each "lasting" for 1/44100 secs.
*/
#include "zexy.h"
/* ------------------------ step~ ----------------------------- */
static t_class *step_class;
typedef struct _step
{
t_object x_obj;
int position;
int length;
int toggle;
int wait4start;
int wait4stop;
} t_step;
static void step_bang(t_step *x)
{
x->wait4stop = x->length + (x->wait4start = x->position);
}
static void step_float(t_step *x, t_float where)
{
x->wait4stop = x->length +
(x->wait4start =
(x->position = (where>0)*where)
);
}
static void step_setlength(t_step *x, t_float arg)
{
x->length = 1 + (arg>0)*arg;
}
static t_int *step_perform(t_int *w)
{
t_step *x = (t_step *)(w[1]);
t_float *out = (t_float *)(w[2]);
int n = (int)(w[3]);
int toggle = x->toggle;
int wait4start = x->wait4start, wait4stop = x->wait4stop;
while (n--)
{
wait4stop--;
if (!wait4start--) toggle ^= 1;
else if (!wait4stop) toggle ^= 1;
*out++ = toggle;
}
x->wait4start = wait4start;
x->wait4stop = wait4stop;
x->toggle = toggle;
return (w+4);
}
static void step_dsp(t_step *x, t_signal **sp)
{
dsp_add(step_perform, 3, x, sp[0]->s_vec, sp[0]->s_n);
}
static void step_helper(void)
{
post("%c step~-object :: generates a unity-step", HEARTSYMBOL);
post("creation : \"dirac~ [<position> [<length>]]\" : create a rectangular window\n"
"\t\t\tat specified position and with specified length (in samples)\n"
"inlet1\t: <position>\t: create a rectangular window at new position\n"
"\t 'bang'\t: create a rectangular window at specified position\n"
"\t 'help'\t: view this\n"
"inlet2\t: <length>\t: define new window length ('0' will make a unity-step)\n"
"outlet\t: signal~");
}
static void *step_new(t_floatarg farg)
{
t_step *x = (t_step *)pd_new(step_class);
inlet_new(&x->x_obj, &x->x_obj.ob_pd, gensym("float"), gensym("ft1"));
outlet_new(&x->x_obj, gensym("signal"));
x->position = 0;
x->wait4start = x->wait4stop = 0;
x->toggle = 1;
step_setlength(x, farg);
return (x);
}
void step_tilde_setup(void)
{
step_class = class_new(gensym("step~"), (t_newmethod)step_new, 0,
sizeof(t_step), 0, A_DEFFLOAT, 0);
class_addfloat(step_class, step_float);
class_addbang(step_class, step_bang);
class_addmethod(step_class, (t_method)step_setlength, gensym("ft1"), A_FLOAT, 0);
class_addmethod(step_class, (t_method)step_dsp, gensym("dsp"), 0);
class_addmethod(step_class, (t_method)step_helper, gensym("help"), 0);
class_sethelpsymbol(step_class, gensym("zexy/step~"));
zexy_register("step~");
}
void z_step__setup(void)
{
step_tilde_setup();
}
|