aboutsummaryrefslogtreecommitdiff
path: root/desiredata/src/m_sched.c
blob: b4e0fc1a030d5229a907f3ff2bbf5cb18fb0f22c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
/* Copyright (c) 1997-1999 Miller Puckette.
* For information on usage and redistribution, and for a DISCLAIMER OF ALL
* WARRANTIES, see the file, "LICENSE.txt," in this distribution.  */

/*  scheduling stuff  */

#include "desire.h"
#include <stdlib.h>

/* for timeval */
#ifdef UNISTD
#include <sys/time.h>
#endif
#ifdef __CYGWIN__
#include <sys/time.h>
#endif
#ifdef MSW
#include "winsock.h"
#endif

#include "assert.h"

/* LATER consider making this variable.  It's now the LCM of all sample
   rates we expect to see: 32000, 44100, 48000, 88200, 96000. */
#define TIMEUNITPERSEC (32.*441000.)

/* T.Grill - enable PD global thread locking - sys_lock, sys_unlock, sys_trylock functions */
#define THREAD_LOCKING
#include "pthread.h"
#include "time.h"

static int sys_quit;
double sys_time;
static double sys_time_per_msec = TIMEUNITPERSEC / 1000.;

/* tb: { */
int sys_keepsched = 1;          /* if 0: change scheduler mode  */
int sys_callbackscheduler = 0;  /* if 1: change scheduler to callback based dsp */
static void run_idle_callbacks(int microsec);
t_fifo * callback_fifo = NULL;
/* tb: }*/

int sys_usecsincelastsleep ();
int sys_sleepgrain;

typedef void (*t_clockmethod)(void *client);

#ifdef UNISTD
#include <unistd.h>
#endif

struct _clock {
    double settime;
    void *owner;
    t_clockmethod fn;
    struct _clock *next;
};

t_clock *clock_setlist;
t_clock *clock_new(void *owner, t_method fn) {
    t_clock *x = (t_clock *)malloc(sizeof(*x));
    x->settime = -1;
    x->owner = owner;
    x->fn = (t_clockmethod)fn;
    x->next = 0;
    return x;
}

void clock_unset(t_clock *x) {
    if (x->settime >= 0) {
        if (x == clock_setlist) clock_setlist = x->next;
        else {
            t_clock *x2 = clock_setlist;
            while (x2->next != x) x2 = x2->next;
            x2->next = x->next;
        }
        x->settime = -1;
    }
}

/* set the clock to call back at an absolute system time */
void clock_set(t_clock *x, double setticks) {
    if (setticks < sys_time) setticks = sys_time;
    clock_unset(x);
    x->settime = setticks;
    if (clock_setlist && clock_setlist->settime <= setticks) {
        t_clock *cbefore, *cafter;
        for (cbefore = clock_setlist, cafter = clock_setlist->next; cbefore; cbefore = cafter, cafter = cbefore->next) {
            if (!cafter || cafter->settime > setticks) {
                cbefore->next = x;
                x->next = cafter;
                return;
            }
        }
    } else x->next = clock_setlist, clock_setlist = x;
}

/* set the clock to call back after a delay in msec */
void clock_delay(t_clock *x, double delaytime) {
    clock_set(x, sys_time + sys_time_per_msec * delaytime);
}

/* get current logical time.  We don't specify what units this is in;
   use clock_gettimesince() to measure intervals from time of this call. 
   This was previously, incorrectly named "clock_getsystime"; the old
   name is aliased to the new one in m_pd.h. */
double clock_getlogicaltime () {return sys_time;}

/* OBSOLETE NAME */
double clock_getsystime () {return sys_time;}

/* elapsed time in milliseconds since the given system time */
double clock_gettimesince(double prevsystime) {
    return (sys_time - prevsystime)/sys_time_per_msec;
}

/* what value the system clock will have after a delay */
double clock_getsystimeafter(double delaytime) {
    return sys_time + sys_time_per_msec * delaytime;
}

void clock_free(t_clock *x) {
    clock_unset(x);
    free(x);
}

/* the following routines maintain a real-execution-time histogram of the
various phases of real-time execution. */

static int sys_bin[] = {0, 2, 5, 10, 20, 30, 50, 100, 1000};
#define NBIN (sizeof(sys_bin)/sizeof(*sys_bin))
#define NHIST 10
static int sys_histogram[NHIST][NBIN];
static double sys_histtime;
static int sched_diddsp, sched_didpoll, sched_didnothing;

void sys_clearhist () {
    unsigned i,j;
    for (i=0; i<NHIST; i++) for (j=0; j<NBIN; j++) sys_histogram[i][j] = 0;
    sys_histtime = sys_getrealtime();
    sched_diddsp = sched_didpoll = sched_didnothing = 0;
}

void sys_printhist () {
    for (int i=0; i<NHIST; i++) {
        int doit = 0;
        for (unsigned int j=0; j<NBIN; j++) if (sys_histogram[i][j]) doit = 1;
        if (doit) {
            post("%2d %8d %8d %8d %8d %8d %8d %8d %8d", i,
                sys_histogram[i][0], sys_histogram[i][1], sys_histogram[i][2], sys_histogram[i][3],
                sys_histogram[i][4], sys_histogram[i][5], sys_histogram[i][6], sys_histogram[i][7]);
        }
    }
    post("dsp %d, pollgui %d, nothing %d", sched_diddsp, sched_didpoll, sched_didnothing);
}

static int sys_histphase;

int sys_addhist(int phase) {
    int phasewas = sys_histphase;
    double newtime = sys_getrealtime();
    int msec = int((newtime-sys_histtime)*1000.);
    for (int j=NBIN-1; j >= 0; j--) {
        if (msec >= sys_bin[j]) {
            sys_histogram[phasewas][j]++;
            break;
        }
    }
    sys_histtime = newtime;
    sys_histphase = phase;
    return phasewas;
}

#define NRESYNC 20

struct t_resync {
    int ntick;
    int error;
};

static int oss_resyncphase = 0;
static int oss_nresync = 0;
static t_resync oss_resync[NRESYNC];

static char *(oss_errornames[]) = {
"unknown",
"ADC blocked",
"DAC blocked",
"A/D/A sync",
"data late",
"xrun",
"sys_lock timeout"
};

void glob_audiostatus (void *dummy) {
    int nresync, nresyncphase, i;
    nresync = oss_nresync >= NRESYNC ? NRESYNC : oss_nresync;
    nresyncphase = oss_resyncphase - 1;
    post("audio I/O error history:");
    post("seconds ago\terror type");
    for (i = 0; i < nresync; i++) {
        int errtype;
        if (nresyncphase < 0) nresyncphase += NRESYNC;
        errtype = oss_resync[nresyncphase].error;
        if (errtype < 0 || errtype > 4) errtype = 0;
        post("%9.2f\t%s", (sched_diddsp - oss_resync[nresyncphase].ntick)
                * ((double)sys_schedblocksize) / sys_dacsr, oss_errornames[errtype]);
        nresyncphase--;
    }
}

static int sched_diored;
static int sched_dioredtime;
static int sched_meterson;

void sys_log_error(int type) {
    oss_resync[oss_resyncphase].ntick = sched_diddsp;
    oss_resync[oss_resyncphase].error = type;
    oss_nresync++;
    if (++oss_resyncphase == NRESYNC) oss_resyncphase = 0;
    if (type != ERR_NOTHING && !sched_diored && (sched_diddsp >= sched_dioredtime)) {
        sys_vgui("pdtk_pd_dio 1\n");
        sched_diored = 1;
    }
    sched_dioredtime = sched_diddsp + (int)(sys_dacsr /(double)sys_schedblocksize);
}

static int sched_lastinclip, sched_lastoutclip, sched_lastindb, sched_lastoutdb;

static void sched_pollformeters () {
    int inclip, outclip, indb, outdb;
    static int sched_nextmeterpolltime, sched_nextpingtime;
    /* if there's no GUI but we're running in "realtime", here is
       where we arrange to ping the watchdog every 2 seconds. */
#ifdef __linux__
    if (sys_hipriority && (sched_diddsp - sched_nextpingtime > 0)) {
        glob_watchdog(0);
        /* ping every 2 seconds */
        sched_nextpingtime = sched_diddsp + 2*(int)(sys_dacsr /(double)sys_schedblocksize);
    }
#endif
    if (sched_diddsp - sched_nextmeterpolltime < 0) return;
    if (sched_diored && sched_diddsp-sched_dioredtime > 0) {
        sys_vgui("pdtk_pd_dio 0\n");
        sched_diored = 0;
    }
    if (sched_meterson) {
        float inmax, outmax;
        sys_getmeters(&inmax, &outmax);
        indb = int(0.5 + rmstodb(inmax));
        outdb = int(0.5 + rmstodb(outmax));
        inclip = inmax > 0.999;
        outclip = outmax >= 1.0;
    } else {
        indb = outdb = 0;
        inclip = outclip = 0;
    }
    if (inclip != sched_lastinclip || outclip != sched_lastoutclip
    || indb != sched_lastindb || outdb != sched_lastoutdb) {
        sys_vgui("pdtk_pd_meters %d %d %d %d\n", indb, outdb, inclip, outclip);
        sched_lastinclip = inclip;
        sched_lastoutclip = outclip;
        sched_lastindb = indb;
        sched_lastoutdb = outdb;
    }
    sched_nextmeterpolltime = sched_diddsp + (int)(sys_dacsr /(double)sys_schedblocksize);
}

void glob_meters(void *dummy, float f) {
    if (f == 0) sys_getmeters(0, 0);
    sched_meterson = (f != 0);
    sched_lastinclip = sched_lastoutclip = sched_lastindb = sched_lastoutdb = -1;
}

#if 0
void glob_foo(void *dummy, t_symbol *s, int argc, t_atom *argv) {
    if (argc) sys_clearhist();
    else sys_printhist();
}
#endif

extern void dsp_tick ();

static int sched_usedacs = 0;
static double sched_referencerealtime, sched_referencelogicaltime;
double sys_time_per_dsp_tick;

void sched_set_using_dacs(int flag) {
    sched_usedacs = flag;
    if (!flag) {
        sched_referencerealtime = sys_getrealtime();
        sched_referencelogicaltime = clock_getlogicaltime();
    }
    sys_time_per_dsp_tick = (TIMEUNITPERSEC) * ((double)sys_schedblocksize) / sys_dacsr;
}

static void run_clock_callbacks(double next_sys_time) {
    if (clock_setlist && clock_setlist->settime <= next_sys_time) {
        do {
            t_clock *c = clock_setlist;
            sys_time = c->settime;
            clock_unset(c); /* the compiler should easily inline this */
            outlet_setstacklim();
            c->fn(c->owner);
        } while (clock_setlist && clock_setlist->settime <= next_sys_time);
    }
}

/* take the scheduler forward one DSP tick, also handling clock timeouts */
void sched_tick(double next_sys_time) {
    run_clock_callbacks(next_sys_time);
    sys_time = next_sys_time;
    sched_diddsp++; /* rethink: how to get rid of this stupid histogram??? */
    dsp_tick();
    /* rethink: should we really do all this midi messaging in the realtime thread ? */
    sys_pollmidiqueue();
    sys_setmiditimediff(0, 1e-6 * sys_schedadvance);
}


/*
Here is Pd's "main loop."  This routine dispatches clock timeouts and DSP
"ticks" deterministically, and polls for input from MIDI and the GUI.  If
we're left idle we also poll for graphics updates; but these are considered
lower priority than the rest.

The time source is normally the audio I/O subsystem via the "sys_send_dacs()"
call.  This call returns true if samples were transferred; false means that
the audio I/O system is still busy with previous transfers.
*/

void sys_pollmidiqueue ();
void sys_initmidiqueue ();

void canvas_stop_dsp ();

int m_scheduler () {
    int idlecount = 0;
    sys_time_per_dsp_tick = (TIMEUNITPERSEC) * ((double)sys_schedblocksize) / sys_dacsr;
    /* T.Grill - lock mutex */
    sys_lock();
    sys_clearhist();
    /* tb: adapt sleepgrain with advance */
    sys_update_sleepgrain();
    sched_set_using_dacs(0); /* tb: dsp is switched off */
    sys_initmidiqueue();
    while (!sys_quit) {
        if (!sys_callbackscheduler || !sched_usedacs)
            while (sys_keepsched) {
                int didsomething = 0;
                int timeforward;
            waitfortick:
                if (sched_usedacs) {
                    timeforward = sys_send_dacs();
                    /* if dacs remain "idle" for 1 sec, they're hung up. */
                    if (timeforward != 0)
                        idlecount = 0;
                    else {
                        idlecount++;
                        if (!(idlecount & 31)) {
                            static double idletime;
                            /* on 32nd idle, start a clock watch;  every 32 ensuing idles, check it */
                            if (idlecount == 32) idletime = sys_getrealtime();
                            else if (sys_getrealtime() - idletime > 1.) {
                                post("audio I/O stuck... closing audio");
                                sys_close_audio();
                                sched_set_using_dacs(0);
				canvas_stop_dsp(); /* added by matju 2007.06.30 */
                                goto waitfortick;
                            }
                        }
                    }
                } else {
                    if (1000. * (sys_getrealtime() - sched_referencerealtime) > clock_gettimesince(sched_referencelogicaltime))
                        timeforward = SENDDACS_YES;
                    else timeforward = SENDDACS_NO;
                }
                sys_setmiditimediff(0, 1e-6 * sys_schedadvance);
                if (timeforward != SENDDACS_NO) sched_tick(sys_time + sys_time_per_dsp_tick);
                if (timeforward == SENDDACS_YES) didsomething = 1;
                sys_pollmidiqueue();
                if (sys_pollgui()) didsomething = 1;
                /* test for idle; if so, do graphics updates. */
                if (!didsomething) {
                    sched_pollformeters();
                    /* tb: call idle callbacks */
                    if (timeforward != SENDDACS_SLEPT) run_idle_callbacks(sys_sleepgrain);
                }
            }
        else /* tb: scheduler for callback-based dsp scheduling */
            while(sys_keepsched) {
                /* tb: allow the audio callback to run */
                sys_unlock();
                sys_microsleep(sys_sleepgrain);
                sys_lock();
                sys_pollmidiqueue();
                sys_setmiditimediff(0, 1e-6 * sys_schedadvance);
                if (sys_pollgui()) continue;
                /* do graphics updates and run idle callbacks */
                sched_pollformeters();
            }
        sys_keepsched = 1;
    }
    sys_close_audio();
    sys_unlock();
    return 0;
}

/* ------------ thread locking ------------------- */
/* added by Thomas Grill */

#ifdef THREAD_LOCKING
static pthread_mutex_t sys_mutex = PTHREAD_MUTEX_INITIALIZER;
static pthread_cond_t sys_cond = PTHREAD_COND_INITIALIZER;

void sys_lock () {
    pthread_mutex_lock(&sys_mutex);
}
void sys_unlock () {
    pthread_mutex_unlock(&sys_mutex);
    pthread_cond_signal(&sys_cond);
}
int sys_trylock () {
    return pthread_mutex_trylock(&sys_mutex);
}

/* tb { */
#include <errno.h>

#ifdef MSW
/* gettimeofday isn't available on windoze ... */
int gettimeofday (struct timeval *tv, void* tz) {
    __int64 now; /* time since 1 Jan 1601 in 100ns  */
    GetSystemTimeAsFileTime ((FILETIME*) &now);
    tv->tv_usec = (long) ((now / 10LL) % 1000000LL);
    tv->tv_sec = (long) ((now - 116444736000000000LL) / 10000000LL);
    return 0;
}
#endif

#if 0
/* osx doesn't define a pthread_mutex_timedlock ... maybe someday
   it will ... */
int sys_timedlock(int microsec) {
        struct timespec timeout;
        struct timeval now;
        /* timedlock seems to have a resolution of 1ms */
        if (microsec < 1000) microsec = 1000;
        gettimeofday(&now,0);
        timeout.tv_sec = now.tv_sec;
        timeout.tv_nsec = (now.tv_usec + microsec) * 1000;
        while (timeout.tv_nsec > 1e9) {
                timeout.tv_sec += 1;
                timeout.tv_nsec -= 1e9;
        }
        int ret = pthread_mutex_timedlock(&sys_mutex, &timeout);
        if (ret) post("timeout, %d", ret);
        return ret;
}
#else

int sys_timedlock(int microsec) {
    struct timespec timeout;
    struct timeval now;
    if (sys_trylock() == 0) return 0;
    if (microsec < 1000) microsec = 1000;
    gettimeofday(&now,0);
    timeout.tv_sec = now.tv_sec;
    timeout.tv_nsec = (now.tv_usec + microsec) * 1000;
    while (timeout.tv_nsec > 1000000000) {
        timeout.tv_sec += 1;
        timeout.tv_nsec -= 1000000000;
    }
    /* in case the lock has been released during the system call, try
       again before waiting for the signal */
    if (sys_trylock() == 0) return 0;
    return pthread_cond_timedwait(&sys_cond, &sys_mutex, &timeout);
}
#endif
/* tb } */

#else
void sys_lock () {}
void sys_unlock () {}
int sys_trylock () { return 0; }
int sys_timedlock (int microsec) { return 0; }
#endif

/* ------------ soft quit ------------------- */
/* added by Thomas Grill -
        just set the quit flag for the scheduler loop
        this is useful for applications using the PD shared library to signal the scheduler to terminate
*/

void sys_exit () {
    sys_keepsched = 0;
    sys_quit = 1;
}

/* tb: place callbacks in scheduler 
 * {   */
/* linked list of callbacks; callback will be freed after returning 0 */
struct t_sched_callback {
    struct t_sched_callback *next; /* next callback in ringbuffer / in fifo */
    t_int (*function)(t_int *argv);
    t_int *argv;
    t_int argc;
};

void sys_callback(t_int (*callback)(t_int* argv), t_int* argv, t_int argc) {
    t_sched_callback* noo = (t_sched_callback *)malloc(sizeof(t_sched_callback));
    noo->function = callback;
    if (argv && argc) {
        noo->argv = (t_int*) copybytes (argv, argc * sizeof (t_int));
        noo->argc = argc;
    } else {
        noo->argc = 0;
        noo->argv = 0;
    }
    noo->next = 0;
    if (!callback_fifo) callback_fifo = fifo_init();
    fifo_put(callback_fifo, noo);
}

void sys_init_idle_callbacks () {
    callback_fifo = fifo_init(); /* tb: initialize fifo for idle callbacks */
}

static t_sched_callback *ringbuffer_head = NULL;

void run_all_idle_callbacks () {
    t_sched_callback *new_callback;
    /* append idle callback to ringbuffer */
    while ((new_callback = (t_sched_callback*) fifo_get(callback_fifo))) {
        t_sched_callback *next;
        /* set the next field to 0 ... it might be set in the fifo */
        new_callback->next = 0;
        if (!ringbuffer_head) {
            ringbuffer_head = new_callback;
        } else {
            next = ringbuffer_head;
            while (next->next) next = next->next;
            next->next = new_callback;
        }
    }
    if (ringbuffer_head) {
        t_sched_callback *idle_callback = ringbuffer_head;
        t_sched_callback *last = 0;
        t_sched_callback *next;
        do {
            int status;
            status = (idle_callback->function)(idle_callback->argv);
            switch (status) {
                /* callbacks returning 0 will be deleted */
            case 0:
                next = idle_callback->next;
                if (idle_callback->argv) free(idle_callback->argv);
                free((void*)idle_callback);
                if (!last) ringbuffer_head = next; else last->next = next;
                idle_callback = next;
                /* callbacks returning 1 will be run again */
            case 1:
                break;
                /* callbacks returning 2 will be run during the next idle callback */
            case 2:
                last = idle_callback;
                idle_callback = idle_callback->next;
            }
        } while (idle_callback);
    }
}

static void run_idle_callbacks(int microsec) {
    t_sched_callback *new_callback;
    double stop = sys_getrealtime()*1.e6 + (double)microsec;
    /* append idle callback to ringbuffer */
    while ((new_callback = (t_sched_callback*) fifo_get(callback_fifo))) {
        /* set the next field to NULL ... it might be set in the fifo */
        new_callback->next = 0;
        if (!ringbuffer_head) {
            ringbuffer_head = new_callback;
        } else {
	    t_sched_callback *next = ringbuffer_head;
            while (next->next != 0)
                next = next->next;
            next->next = new_callback;
        }
    }
    if (ringbuffer_head) {
        double remain = stop - sys_getrealtime() * 1.e6;
        t_sched_callback *idle_callback = ringbuffer_head;
        t_sched_callback *last = 0;
        t_sched_callback *next;
        do {
//            sys_lock();
            int status = idle_callback->function(idle_callback->argv);
//            sys_unlock();
            switch (status) {
                /* callbacks returning 0 will be deleted */
            case 0:
                next = idle_callback->next;
                if (idle_callback->argc) free(idle_callback->argv);
                free((void*)idle_callback);
                if (!last) ringbuffer_head = next; else last->next = next;
                idle_callback = next;
                /* callbacks returning 1 will be run again */
            case 1:
                break;
                /* callbacks returning 2 will be run during the next idle callback */
            case 2:
                last = idle_callback;
                idle_callback = idle_callback->next;
            }
            remain = stop-sys_getrealtime()*1.e6;
        } while (idle_callback && remain>0);
        /* sleep for the rest of the time */
        if(remain > 0) {
		sys_unlock();
		sys_microsleep(int(remain));
		sys_lock();
	}
    } else {
	sys_unlock();
        sys_microsleep(microsec);
	sys_lock();
    }
}
/* } tb */

void sys_setscheduler(int scheduler) {
    sys_keepsched = 0;
    sys_callbackscheduler = scheduler;
    return;
}

int sys_getscheduler () {return sys_callbackscheduler;}

static t_int sys_xrun_notification_callback(t_int *dummy) {
    t_symbol *pd = gensym("pd");
    t_symbol *xrun = gensym("xrun");
    typedmess(pd->s_thing, xrun, 0, 0);
    return 0;
}

void sys_xrun_notification () {sys_callback(sys_xrun_notification_callback, 0, 0);}

static t_int sys_lock_timeout_notification_callback(t_int *dummy) {
    t_symbol *pd = gensym("pd");
    t_symbol *timeout = gensym("sys_lock_timeout");
    typedmess(pd->s_thing, timeout, 0, 0);
    return 0;
}

void sys_lock_timeout_notification () {sys_callback(sys_lock_timeout_notification_callback, 0, 0);}