aboutsummaryrefslogtreecommitdiff
path: root/externals/gridflow/base/flow_objects_for_image.c
blob: 2041c3e1a5ec3146d2da120c5f55d812fee3e63f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
/*
	$Id: flow_objects_for_image.c,v 1.1 2005-10-04 02:02:13 matju Exp $

	GridFlow
	Copyright (c) 2001,2002,2003 by Mathieu Bouchard

	This program is free software; you can redistribute it and/or
	modify it under the terms of the GNU General Public License
	as published by the Free Software Foundation; either version 2
	of the License, or (at your option) any later version.

	See file ../COPYING for further informations on licensing terms.

	This program is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty of
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
	GNU General Public License for more details.

	You should have received a copy of the GNU General Public License
	along with this program; if not, write to the Free Software
	Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/

#include <math.h>
#include "grid.h.fcs"

static void expect_picture (P<Dim> d) {
	if (d->n!=3) RAISE("(height,width,chans) dimensions please");}
static void expect_rgb_picture (P<Dim> d) {
	expect_picture(d);
	if (d->get(2)!=3) RAISE("(red,green,blue) channels please");}
static void expect_rgba_picture (P<Dim> d) {
	expect_picture(d);
	if (d->get(2)!=4) RAISE("(red,green,blue,alpha) channels please");}
static void expect_max_one_dim (P<Dim> d) {
	if (d->n>1) { RAISE("expecting Dim[] or Dim[n], got %s",d->to_s()); }}

//****************************************************************
//{ Dim[A,B,*Cs]<T>,Dim[D,E]<T> -> Dim[A,B,*Cs]<T> }

static void expect_convolution_matrix (P<Dim> d) {
	if (d->n != 2) RAISE("only exactly two dimensions allowed for now (got %d)",
		d->n);
}

// entry in a compiled convolution kernel
struct PlanEntry { int y,x; bool neutral; };

\class GridConvolve < GridObject
struct GridConvolve : GridObject {
	\attr Numop *op_para;
	\attr Numop *op_fold;
	\attr PtrGrid seed;
	\attr PtrGrid b;
	PtrGrid a;
	int plann;
	PlanEntry *plan; //Pt?
	int margx,margy; // margins
	GridConvolve () : plan(0) { b.constrain(expect_convolution_matrix); plan=0; }
	\decl void initialize (Grid *r=0);
	\decl void _0_op   (Numop *op);
	\decl void _0_fold (Numop *op);
	\decl void _0_seed (Grid *seed);
	\grin 0
	\grin 1
	template <class T> void copy_row (Pt<T> buf, int sx, int y, int x);
	template <class T> void make_plan (T bogus);
	~GridConvolve () {if (plan) delete[] plan;}
};

template <class T> void GridConvolve::copy_row (Pt<T> buf, int sx, int y, int x) {
	int day = a->dim->get(0), dax = a->dim->get(1), dac = a->dim->prod(2);
	y=mod(y,day); x=mod(x,dax);
	Pt<T> ap = (Pt<T>)*a + y*dax*dac;
	while (sx) {
		int sx1 = min(sx,dax-x);
		COPY(buf,ap+x*dac,sx1*dac);
		x=0;
		buf += sx1*dac;
		sx -= sx1;
	}
}

static Numop *OP(Ruby x) {return FIX2PTR(Numop,rb_hash_aref(op_dict,x));}

template <class T> void GridConvolve::make_plan (T bogus) {
	P<Dim> da = a->dim, db = b->dim;
	int dby = db->get(0);
	int dbx = db->get(1);
	if (plan) delete[] plan;
	plan = new PlanEntry[dbx*dby];
	int i=0;
	for (int y=0; y<dby; y++) {
		for (int x=0; x<dbx; x++) {
			T rh = ((Pt<T>)*b)[y*dbx+x];
			bool neutral = op_para->on(rh)->is_neutral(rh,at_right);
			bool absorbent = op_para->on(rh)->is_absorbent(rh,at_right);
			STACK_ARRAY(T,foo,1);
			if (absorbent) {
				foo[0] = 0;
				op_para->map(1,foo,rh);
				absorbent = op_fold->on(rh)->is_neutral(foo[0],at_right);
			}
			if (absorbent) continue;
			plan[i].y = y;
			plan[i].x = x;
			plan[i].neutral = neutral;
			i++;
		}
	}
	plann = i;
}

GRID_INLET(GridConvolve,0) {
	SAME_TYPE(in,b);
	SAME_TYPE(in,seed);
	P<Dim> da = in->dim, db = b->dim;
	if (!db) RAISE("right inlet has no grid");
	if (!seed) RAISE("seed missing");
	if (db->n != 2) RAISE("right grid must have two dimensions");
	if (da->n < 2) RAISE("left grid has less than two dimensions");
	if (seed->dim->n != 0) RAISE("seed must be scalar");
	if (da->get(0) < db->get(0)) RAISE("grid too small (y): %d < %d", da->get(0), db->get(0));
	if (da->get(1) < db->get(1)) RAISE("grid too small (x): %d < %d", da->get(1), db->get(1));
	margy = (db->get(0)-1)/2;
	margx = (db->get(1)-1)/2;
	a=new Grid(in->dim,in->nt);
	out=new GridOutlet(this,0,da,in->nt);
} GRID_FLOW {
	COPY((Pt<T>)*a+in->dex, data, n);
} GRID_FINISH {
	Numop *op_put = OP(SYM(put));
	make_plan((T)0);
	int dbx = b->dim->get(1);
	int day = a->dim->get(0);
	int n = a->dim->prod(1);
	int sx = a->dim->get(1)+dbx-1;
	int n2 = sx*a->dim->prod(2);
	STACK_ARRAY(T,buf,n);
	STACK_ARRAY(T,buf2,n2);
	T orh=0;
	for (int iy=0; iy<day; iy++) {
		op_put->map(n,buf,*(T *)*seed);
		for (int i=0; i<plann; i++) {
			int jy = plan[i].y;
			int jx = plan[i].x;
			T rh = ((Pt<T>)*b)[jy*dbx+jx];
			if (i==0 || plan[i].y!=plan[i-1].y || orh!=rh) {
				copy_row(buf2,sx,iy+jy-margy,-margx);
				if (!plan[i].neutral) op_para->map(n2,buf2,rh);
			}
			op_fold->zip(n,buf,buf2+jx*a->dim->prod(2));
			orh=rh;
		}
		out->send(n,buf);
	}
	a=0;
} GRID_END

GRID_INPUT(GridConvolve,1,b) {} GRID_END

\def void _0_op   (Numop *op ) { this->op_para=op; }
\def void _0_fold (Numop *op ) { this->op_fold=op; }
\def void _0_seed (Grid *seed) { this->seed=seed; }

\def void initialize (Grid *r) {
	rb_call_super(argc,argv);
	this->op_para = op_mul;
	this->op_fold = op_add;
	this->seed = new Grid(new Dim(),int32_e,true);
	this->b= r ? r : new Grid(new Dim(1,1),int32_e,true);
}

\classinfo { IEVAL(rself,"install '#convolve',2,1"); }
\end class GridConvolve

/* ---------------------------------------------------------------- */
/* "#scale_by" does quick scaling of pictures by integer factors */
/*{ Dim[A,B,3]<T> -> Dim[C,D,3]<T> }*/
\class GridScaleBy < GridObject
struct GridScaleBy : GridObject {
	\attr PtrGrid scale; // integer scale factor
	int scaley;
	int scalex;
	\decl void initialize (Grid *factor=0);
	\grin 0
	\grin 1
	void prepare_scale_factor () {
		scaley = ((Pt<int32>)*scale)[0];
		scalex = ((Pt<int32>)*scale)[scale->dim->prod()==1 ? 0 : 1];
		if (scaley<1) scaley=2;
		if (scalex<1) scalex=2;
	}
};

GRID_INLET(GridScaleBy,0) {
	P<Dim> a = in->dim;
	expect_picture(a);
	out=new GridOutlet(this,0,new Dim(a->get(0)*scaley,a->get(1)*scalex,a->get(2)),in->nt);
	in->set_factor(a->get(1)*a->get(2));
} GRID_FLOW {
	int rowsize = in->dim->prod(1);
	STACK_ARRAY(T,buf,rowsize*scalex);
	int chans = in->dim->get(2);
	#define Z(z) buf[p+z]=data[i+z]
	for (; n>0; data+=rowsize, n-=rowsize) {
		int p=0;
		#define LOOP(z) \
			for (int i=0; i<rowsize; i+=z) \
			for (int k=0; k<scalex; k++, p+=3)
		switch (chans) {
		case 3: LOOP(3) {Z(0);Z(1);Z(2);} break;
		case 4: LOOP(4) {Z(0);Z(1);Z(2);Z(3);} break;
		default: LOOP(chans) {for (int c=0; c<chans; c++) Z(c);}
		}
		#undef LOOP
		for (int j=0; j<scaley; j++) out->send(rowsize*scalex,buf);
	}
	#undef Z
} GRID_END

static void expect_scale_factor (P<Dim> dim) {
	if (dim->prod()!=1 && dim->prod()!=2)
		RAISE("expecting only one or two numbers");
}

GRID_INPUT(GridScaleBy,1,scale) { prepare_scale_factor(); } GRID_END

\def void initialize (Grid *factor) {
	scale.constrain(expect_scale_factor);
	rb_call_super(argc,argv);
	scale=new Grid(INT2NUM(2));
	if (factor) scale=factor;
	prepare_scale_factor();
}

\classinfo { IEVAL(rself,"install '#scale_by',2,1"); }
\end class GridScaleBy

// ----------------------------------------------------------------
//{ Dim[A,B,3]<T> -> Dim[C,D,3]<T> }
\class GridDownscaleBy < GridObject
struct GridDownscaleBy : GridObject {
	\attr PtrGrid scale;
	\attr bool smoothly;
	int scaley;
	int scalex;
	PtrGrid temp;
	\decl void initialize (Grid *factor=0, Symbol option=Qnil);
	\grin 0
	\grin 1
	void prepare_scale_factor () {
		scaley = ((Pt<int32>)*scale)[0];
		scalex = ((Pt<int32>)*scale)[scale->dim->prod()==1 ? 0 : 1];
		if (scaley<1) scaley=2;
		if (scalex<1) scalex=2;
	}
};

GRID_INLET(GridDownscaleBy,0) {

	P<Dim> a = in->dim;
	if (a->n!=3) RAISE("(height,width,chans) please");
	out=new GridOutlet(this,0,new Dim(a->get(0)/scaley,a->get(1)/scalex,a->get(2)),in->nt);
	in->set_factor(a->get(1)*a->get(2));
	// i don't remember why two rows instead of just one.
	temp=new Grid(new Dim(2,in->dim->get(1)/scalex,in->dim->get(2)),in->nt);
} GRID_FLOW {
	int rowsize = in->dim->prod(1);
	int rowsize2 = temp->dim->prod(1);
	Pt<T> buf = (Pt<T>)*temp; //!@#$ maybe should be something else than T ?
	int xinc = in->dim->get(2)*scalex;
	int y = in->dex / rowsize;
	int chans=in->dim->get(2);
	#define Z(z) buf[p+z]+=data[i+z]
	if (smoothly) {
		while (n>0) {
			if (y%scaley==0) CLEAR(buf,rowsize2);
			#define LOOP(z) \
				for (int i=0,p=0; p<rowsize2; p+=z) \
				for (int j=0; j<scalex; j++,i+=z)
			switch (chans) {
			case 1: LOOP(1) {Z(0);} break;
			case 2: LOOP(2) {Z(0);Z(1);} break;
			case 3: LOOP(3) {Z(0);Z(1);Z(2);} break;
			case 4: LOOP(4) {Z(0);Z(1);Z(2);Z(3);} break;
			default:LOOP(chans) {for (int k=0; k<chans; k++) Z(k);} break;
			}
			#undef LOOP
			y++;
			if (y%scaley==0 && out->dim) {
				op_div->map(rowsize2,buf,(T)(scalex*scaley));
				out->send(rowsize2,buf);
				CLEAR(buf,rowsize2);
			}
			data+=rowsize;
			n-=rowsize;
		}
	#undef Z
	} else {
	#define Z(z) buf[p+z]=data[i+z]
		for (; n>0 && out->dim; data+=rowsize, n-=rowsize,y++) {
			if (y%scaley!=0) continue;
			#define LOOP(z) for (int i=0,p=0; p<rowsize2; i+=xinc, p+=z)
			switch(in->dim->get(2)) {
			case 1: LOOP(1) {Z(0);} break;
			case 2: LOOP(2) {Z(0);Z(1);} break;
			case 3: LOOP(3) {Z(0);Z(1);Z(2);} break;
			case 4: LOOP(4) {Z(0);Z(1);Z(2);Z(3);} break;
			default:LOOP(chans) {for (int k=0; k<chans; k++) Z(k);}break;
			}
			#undef LOOP
			out->send(rowsize2,buf);
		}
	}
	#undef Z
} GRID_END

GRID_INPUT(GridDownscaleBy,1,scale) { prepare_scale_factor(); } GRID_END

\def void initialize (Grid *factor, Symbol option) {
	scale.constrain(expect_scale_factor);
	rb_call_super(argc,argv);
	scale=new Grid(INT2NUM(2));
	if (factor) scale=factor;
	prepare_scale_factor();
	smoothly = option==SYM(smoothly);
}

\classinfo { IEVAL(rself,"install '#downscale_by',2,1"); }
\end class GridDownscaleBy

//****************************************************************
\class GridLayer < GridObject
struct GridLayer : GridObject {
	PtrGrid r;
	GridLayer() { r.constrain(expect_rgb_picture); }
	\grin 0 int
	\grin 1 int
};

GRID_INLET(GridLayer,0) {
	NOTEMPTY(r);
	SAME_TYPE(in,r);
	P<Dim> a = in->dim;
	expect_rgba_picture(a);
	if (a->get(1)!=r->dim->get(1)) RAISE("same width please");
	if (a->get(0)!=r->dim->get(0)) RAISE("same height please");
	in->set_factor(a->prod(2));
	out=new GridOutlet(this,0,r->dim);
} GRID_FLOW {
	Pt<T> rr = ((Pt<T>)*r) + in->dex*3/4;
	STACK_ARRAY(T,foo,n*3/4);
#define COMPUTE_ALPHA(c,a) \
	foo[j+c] = (data[i+c]*data[i+a] + rr[j+c]*(256-data[i+a])) >> 8
	for (int i=0,j=0; i<n; i+=4,j+=3) {
		COMPUTE_ALPHA(0,3);
		COMPUTE_ALPHA(1,3);
		COMPUTE_ALPHA(2,3);
	}
#undef COMPUTE_ALPHA
	out->send(n*3/4,foo);
} GRID_END

GRID_INPUT(GridLayer,1,r) {} GRID_END

\classinfo { IEVAL(rself,"install '#layer',2,1"); }
\end class GridLayer

// ****************************************************************
// pad1,pad2 only are there for 32-byte alignment
struct Line { int32 y1,x1,y2,x2,x,m,pad1,pad2; };

static void expect_polygon (P<Dim> d) {
	if (d->n!=2 || d->get(1)!=2) RAISE("expecting Dim[n,2] polygon");
}

\class DrawPolygon < GridObject
struct DrawPolygon : GridObject {
	\attr Numop *op;
	\attr PtrGrid color;
	\attr PtrGrid polygon;
	PtrGrid color2;
	PtrGrid lines;
	int lines_start;
	int lines_stop;
	DrawPolygon() {
		color.constrain(expect_max_one_dim);
		polygon.constrain(expect_polygon);
	}
	\decl void initialize (Numop *op, Grid *color=0, Grid *polygon=0);
	\grin 0
	\grin 1
	\grin 2 int32
	void init_lines();

};

void DrawPolygon::init_lines () {
	int nl = polygon->dim->get(0);
	lines=new Grid(new Dim(nl,8), int32_e);
	Pt<Line> ld = Pt<Line>((Line *)(int32 *)*lines,nl);
	Pt<int32> pd = *polygon;
	for (int i=0,j=0; i<nl; i++) {
		ld[i].y1 = pd[j+0];
		ld[i].x1 = pd[j+1];
		j=(j+2)%(2*nl);
		ld[i].y2 = pd[j+0];
		ld[i].x2 = pd[j+1];
		if (ld[i].y1>ld[i].y2) memswap(Pt<int32>(ld+i)+0,Pt<int32>(ld+i)+2,2);
	}
}

static int order_by_starting_scanline (const void *a, const void *b) {
	return ((Line *)a)->y1 - ((Line *)b)->y1;
}

static int order_by_column (const void *a, const void *b) {
	return ((Line *)a)->x - ((Line *)b)->x;
}

GRID_INLET(DrawPolygon,0) {
	NOTEMPTY(color);
	NOTEMPTY(polygon);
	NOTEMPTY(lines);
	SAME_TYPE(in,color);
	if (in->dim->n!=3) RAISE("expecting 3 dimensions");
	if (in->dim->get(2)!=color->dim->get(0))
		RAISE("image does not have same number of channels as stored color");
	out=new GridOutlet(this,0,in->dim,in->nt);
	lines_start = lines_stop = 0;
	in->set_factor(in->dim->get(1)*in->dim->get(2));
	int nl = polygon->dim->get(0);
	qsort((int32 *)*lines,nl,sizeof(Line),order_by_starting_scanline);
	int cn = color->dim->prod();
	color2=new Grid(new Dim(cn*16), color->nt);
	for (int i=0; i<16; i++) COPY((Pt<T>)*color2+cn*i,(Pt<T>)*color,cn);
} GRID_FLOW {
	int nl = polygon->dim->get(0);
	Pt<Line> ld = Pt<Line>((Line *)(int32 *)*lines,nl);
	int f = in->factor();
	int y = in->dex/f;
	int cn = color->dim->prod();
	Pt<T> cd = (Pt<T>)*color2;
	
	while (n) {
		while (lines_stop != nl && ld[lines_stop].y1<=y) lines_stop++;
		for (int i=lines_start; i<lines_stop; i++) {
			if (ld[i].y2<=y) {
				memswap(ld+i,ld+lines_start,1);
				lines_start++;
			}
		}
		if (lines_start == lines_stop) {
			out->send(f,data);
		} else {
			int32 xl = in->dim->get(1);
			Pt<T> data2 = ARRAY_NEW(T,f);
			COPY(data2,data,f);
			for (int i=lines_start; i<lines_stop; i++) {
				Line &l = ld[i];
				l.x = l.x1 + (y-l.y1)*(l.x2-l.x1+1)/(l.y2-l.y1+1);
			}
			qsort(ld+lines_start,lines_stop-lines_start,
				sizeof(Line),order_by_column);
			for (int i=lines_start; i<lines_stop-1; i+=2) {
				int xs = max(ld[i].x,(int32)0), xe = min(ld[i+1].x,xl);
				if (xs>=xe) continue; /* !@#$ WHAT? */
				while (xe-xs>=16) { op->zip(16*cn,data2+cn*xs,cd); xs+=16; }
				op->zip((xe-xs)*cn,data2+cn*xs,cd);
			}
			out->give(f,data2);
		}
		n-=f;
		data+=f;
		y++;
	}
} GRID_END

GRID_INPUT(DrawPolygon,1,color) {} GRID_END
GRID_INPUT(DrawPolygon,2,polygon) {init_lines();} GRID_END

\def void initialize (Numop *op, Grid *color, Grid *polygon) {
	rb_call_super(argc,argv);
	this->op = op;
	if (color) this->color=color;
	if (polygon) { this->polygon=polygon; init_lines(); }
}

\classinfo { IEVAL(rself,"install '#draw_polygon',3,1"); }
\end class DrawPolygon

//****************************************************************
static void expect_position(P<Dim> d) {
	if (d->n!=1) RAISE("position should have 1 dimension, not %d", d->n);
	if (d->v[0]!=2) RAISE("position dim 0 should have 2 elements, not %d", d->v[0]);
}

\class DrawImage < GridObject
struct DrawImage : GridObject {
	\attr Numop *op;
	\attr PtrGrid image;
	\attr PtrGrid position;
	\attr bool alpha;
	\attr bool tile;
	
	DrawImage() : alpha(false), tile(false) {
		position.constrain(expect_position);
		image.constrain(expect_picture);
	}

	\decl void initialize (Numop *op, Grid *image=0, Grid *position=0);
	\decl void _0_alpha (bool v=true);
	\decl void _0_tile (bool v=true);
	\grin 0
	\grin 1
	\grin 2 int32
	// draw row # ry of right image in row buffer buf, starting at xs
	// overflow on both sides has to be handled automatically by this method
	template <class T> void draw_segment(Pt<T> obuf, Pt<T> ibuf, int ry, int x0);
};

#define COMPUTE_ALPHA(c,a) obuf[j+(c)] = ibuf[j+(c)] + (rbuf[a])*(obuf[j+(c)]-ibuf[j+(c)])/256;
#define COMPUTE_ALPHA4(b) \
	COMPUTE_ALPHA(b+0,b+3); \
	COMPUTE_ALPHA(b+1,b+3); \
	COMPUTE_ALPHA(b+2,b+3); \
	obuf[b+3] = rbuf[b+3] + (255-rbuf[b+3])*(ibuf[j+b+3])/256;

template <class T> void DrawImage::draw_segment(Pt<T> obuf, Pt<T> ibuf, int ry, int x0) {
	if (ry<0 || ry>=image->dim->get(0)) return; // outside of image
	int sx = in[0]->dim->get(1), rsx = image->dim->get(1);
	int sc = in[0]->dim->get(2), rsc = image->dim->get(2);
	Pt<T> rbuf = (Pt<T>)*image + ry*rsx*rsc;
	if (x0>sx || x0<=-rsx) return; // outside of buffer
	int n=rsx;
	if (x0+n>sx) n=sx-x0;
	if (x0<0) { rbuf-=rsc*x0; n+=x0; x0=0; }
	if (alpha && rsc==4 && sc==3) { // RGB by RGBA //!@#$ optimise
		int j=sc*x0;
		for (; n; n--, rbuf+=4, j+=3) {
			op->zip(sc,obuf+j,rbuf); COMPUTE_ALPHA(0,3); COMPUTE_ALPHA(1,3); COMPUTE_ALPHA(2,3);
		}
	} else if (alpha && rsc==4 && sc==4) { // RGBA by RGBA
		op->zip(n*rsc,obuf+x0*rsc,rbuf);
		int j=sc*x0;
		for (; n>=4; n-=4, rbuf+=16, j+=16) {
			COMPUTE_ALPHA4(0);COMPUTE_ALPHA4(4);
			COMPUTE_ALPHA4(8);COMPUTE_ALPHA4(12);
		}
		for (; n; n--, rbuf+=4, j+=4) {
			COMPUTE_ALPHA4(0);
		}
	} else { // RGB by RGB, etc
		op->zip(n*rsc,obuf+sc*x0,rbuf);
	}
}

GRID_INLET(DrawImage,0) {
	NOTEMPTY(image);
	NOTEMPTY(position);
	SAME_TYPE(in,image);
	if (in->dim->n!=3) RAISE("expecting 3 dimensions");
	int lchan = in->dim->get(2);
	int rchan = image->dim->get(2);
	if (alpha && rchan!=4) {
		RAISE("alpha mode works only with 4 channels in right_hand");
	}
	if (lchan != rchan-(alpha?1:0) && lchan != rchan) {
		RAISE("right_hand has %d channels, alpha=%d, left_hand has %d, expecting %d or %d",
			rchan, alpha?1:0, lchan, rchan-(alpha?1:0), rchan);
	}
	out=new GridOutlet(this,0,in->dim,in->nt);
	in->set_factor(in->dim->get(1)*in->dim->get(2));
} GRID_FLOW {
	int f = in->factor();
	int y = in->dex/f;
	if (position->nt != int32_e) RAISE("position has to be int32");
	int py = ((int32*)*position)[0], rsy = image->dim->v[0], sy=in->dim->get(0);
	int px = ((int32*)*position)[1], rsx = image->dim->v[1], sx=in->dim->get(1);
	for (; n; y++, n-=f, data+=f) {
		int ty = div2(y-py,rsy);
		if (tile || ty==0) {
			Pt<T> data2 = ARRAY_NEW(T,f);
			COPY(data2,data,f);
			if (tile) {
				for (int x=px-div2(px+rsx-1,rsx)*rsx; x<sx; x+=rsx) {
					draw_segment(data2,data,mod(y-py,rsy),x);
				}
			} else {
				draw_segment(data2,data,y-py,px);
			}
			out->give(f,data2);
		} else {
			out->send(f,data);
		}
	}
} GRID_END

GRID_INPUT(DrawImage,1,image) {} GRID_END
GRID_INPUT(DrawImage,2,position) {} GRID_END
\def void _0_alpha (bool v=true) { alpha = v; gfpost("ALPHA=%d",v); }
\def void _0_tile (bool v=true) {   tile = v; }

\def void initialize (Numop *op, Grid *image, Grid *position) {
	rb_call_super(argc,argv);
	this->op = op;
	if (image) this->image=image;
	if (position) this->position=position;
	else this->position=new Grid(new Dim(2),int32_e,true);
}

\classinfo { IEVAL(rself,"install '#draw_image',3,1"); }
\end class DrawImage

void startup_flow_objects_for_image () {
	\startall
}