aboutsummaryrefslogtreecommitdiff
path: root/externals/gridflow/doc/reference.html
blob: 82d8bf99e4b2a92d0536a92670312c7130491f19 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
<html><head>
<!-- $Id: reference.html 3731 2008-06-02 14:30:25Z matju $ -->
<title>GridFlow 0.9.3 - Reference Manual: Flow Classes</title>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<link rel="stylesheet" href="gridflow.css" type="text/css">
</head>
<body leftmargin="0" topmargin="0" style="background-color: rgb(255, 255, 255);" marginheight="0" marginwidth="0">
<table width="100%" cellspacing="10"><tr><td>
<table width="100%" border="0" cellspacing="0" cellpadding="0"><tr>
  <td>             <img src="images/header1.png" alt="GridFlow" width="384"  height="64"></td>
  <td width="100%"><img src="images/header2.png" alt="GridFlow" width="100%" height="64"></td>
  <td>             <img src="images/header3.png" alt="GridFlow" width="32"   height="64"></td>
</table>
</td></tr></table>
<blockquote>

<body bgcolor="#FFFFFF"  leftmargin="0" topmargin="0"  marginwidth="0" marginheight="0">

<table width="100%" bgcolor="white" border="0" cellspacing="2">
<tr><td colspan="4" bgcolor="black">
<img src="images/black.png" height="2" width="1"></td></tr>

<tr><td colspan="4" height="16"> 
    <h4>GridFlow 0.9.3 - Reference Manual: Flow Classes</h4>
</td></tr>
<tr> 
  <td width="5%"  rowspan="2">&nbsp;</td>
  <td width="15%" height="23">&nbsp;</td>
  <td width="80%" height="23">&nbsp;</td>
  <td width="5%"  height="23">&nbsp;</td>
</tr>
<tr><td colspan="2"><div cols="3"><h4><a href="#Objects_for_making_grids_and_breaking_them_down">Objects for making grids and breaking them down</a></h4><ul>
<li><a href="##import">#import
</a></li>
<li><a href="##export">#export
</a></li>
<li><a href="##export_list">#export_list
</a></li>
<li><a href="##export_symbol">#export_symbol
</a></li>
<li><a href="##pack">#pack
</a></li>
<li><a href="##color">#color
</a></li>
<li><a href="##unpack">#unpack
</a></li>
<li><a href="##centroid">#centroid
</a></li>
<li><a href="##for">#for
</a></li>
</ul>
<h4><a href="#Objects_for_Computing">Objects for Computing</a></h4><ul>
<li><a href="##">#
</a></li>
<li><a href="#@complex_sq">@complex_sq
</a></li>
<li><a href="##fold">#fold
</a></li>
<li><a href="##scan">#scan
</a></li>
<li><a href="##outer">#outer
</a></li>
<li><a href="##inner">#inner
</a></li>
<li><a href="#@join">@join
</a></li>
<li><a href="##finished">#finished
</a></li>
<li><a href="##cast">#cast
</a></li>
<li><a href="##ravel">#ravel
</a></li>
<li><a href="##grade">#grade
</a></li>
<li><a href="##perspective">#perspective
</a></li>
<li><a href="##transpose">#transpose
</a></li>
<li><a href="##fade">#fade
</a></li>
<li><a href="##fade_lin">#fade_lin
</a></li>
<li><a href="##reverse">#reverse
</a></li>
</ul>
<h4><a href="#Objects_for_Coordinate_Transforms">Objects for Coordinate Transforms</a></h4><ul>
<li><a href="##redim">#redim
</a></li>
<li><a href="##store">#store
</a></li>
<li><a href="##scale_to">#scale_to
</a></li>
<li><a href="##scale_by">#scale_by
</a></li>
<li><a href="##downscale_by">#downscale_by
</a></li>
<li><a href="##spread">#spread
</a></li>
<li><a href="##rotate">#rotate
</a></li>
<li><a href="##remap_image">#remap_image
</a></li>
</ul>
<h4><a href="#Objects_for_Reporting">Objects for Reporting</a></h4><ul>
<li><a href="##dim">#dim
</a></li>
<li><a href="##type">#type
</a></li>
<li><a href="##print">#print
</a></li>
<li><a href="#display">display
</a></li>
</ul>
<h4><a href="#Objects_for_Color_Conversion">Objects for Color Conversion</a></h4><ul>
<li><a href="##apply_colormap_channelwise">#apply_colormap_channelwise
</a></li>
<li><a href="##rgb_to_greyscale">#rgb_to_greyscale
</a></li>
<li><a href="##greyscale_to_rgb">#greyscale_to_rgb
</a></li>
<li><a href="##yuv_to_rgb">#yuv_to_rgb
</a></li>
<li><a href="##rgb_to_yuv">#rgb_to_yuv
</a></li>
</ul>
<h4><a href="#Objects_for_Miscellaneous_Picture_Processing">Objects for Miscellaneous Picture Processing</a></h4><ul>
<li><a href="##convolve">#convolve
</a></li>
<li><a href="##contrast">#contrast
</a></li>
<li><a href="##posterize">#posterize
</a></li>
<li><a href="##solarize">#solarize
</a></li>
<li><a href="##checkers">#checkers
</a></li>
<li><a href="##layer">#layer
</a></li>
<li><a href="##draw_image">#draw_image
</a></li>
<li><a href="##draw_polygon">#draw_polygon
</a></li>
<li><a href="##text_to_image">#text_to_image
</a></li>
<li><a href="##hueshift">#hueshift
</a></li>
</ul>
<h4><a href="#Other_Objects">Other Objects</a></h4><ul>
<li><a href="#rtmetro">rtmetro
</a></li>
<li><a href="#bindpatcher">bindpatcher
</a></li>
<li><a href="#pingpong">pingpong
</a></li>
<li><a href="##global">#global
</a></li>
<li><a href="#fps">fps
</a></li>
<li><a href="#unix_time">unix_time
</a></li>
<li><a href="#ls">ls
</a></li>
<li><a href="#exec">exec
</a></li>
<li><a href="#renamefile">renamefile
</a></li>
<li><a href="#plotter_control">plotter_control
</a></li>
<li><a href="#rubyarray">rubyarray
</a></li>
</ul>
<h4><a href="#jMax_emulation">jMax emulation</a></h4><ul>
<li><a href="#fork">fork
</a></li>
<li><a href="#foreach">foreach
</a></li>
<li><a href="#rubysprintf">rubysprintf
</a></li>
<li><a href="#listflatten">listflatten
</a></li>
<li><a href="#listmake">listmake
</a></li>
<li><a href="#listlength">listlength
</a></li>
<li><a href="#listelement">listelement
</a></li>
<li><a href="#listsublist">listsublist
</a></li>
<li><a href="#listprepend">listprepend
</a></li>
<li><a href="#listappend">listappend
</a></li>
<li><a href="#listreverse">listreverse
</a></li>
<li><a href="#oneshot">oneshot
</a></li>
<li><a href="#inv+">inv+
</a></li>
<li><a href="#inv*">inv*
</a></li>
<li><a href="#messageprepend">messageprepend
</a></li>
<li><a href="#messageappend">messageappend
</a></li>
<li><a href="#shunt">shunt
</a></li>
<li><a href="#demux">demux
</a></li>
<li><a href="#range">range
</a></li>
</ul>
<br><br>
</div></td></tr> <tr><td colspan="4" bgcolor="black">
<img src="images/black.png" width="1" height="2"></td></tr>
<tr><td colspan="4"><a name="Objects_for_making_grids_and_breaking_them_down"></a><h4>Objects for making grids and breaking them down</h4></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="#import">#import</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <p>This object allows you to produce grids from non-grid data, such as 
		integers and lists of integers. This object also reframes/resyncs 
		grids so that multiple grids may be joined together, or 
		single grids may be split. That kind of operation is already done implicitly in many 
		cases (e.g. sending an integer or list to a grid-receiving inlet), 
		but using this object you have greater flexibility on the conversion.</p> <br><b>attr</b>&nbsp;shape <b>(</b><b><i>GridShape|symbol(per_message)</i> shape</b><b>)</b>  <br><b>attr</b>&nbsp;cast <b>(</b><b><i>NumberType</i> cast</b><b>)</b>  <br><b>method</b>&nbsp;init <b>(</b>shape<b>, </b>cast<b>)</b>    <br>
  <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;int <b>(</b><b>)</b>  
				begins a new grid if there is no current grid. 
				puts that integer in the current grid. 
				ends the grid if it is full. 
				the constructed grid is not stored: it is streamed. 
				the stream is buffered, so the output is in packets 
				of about a thousand numbers. <br>
 <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;list <b>(</b><b>)</b>  
				just like a sequence of ints sent one after another, 
				except in a single message. <br>
 <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;symbol <b>(</b><b>)</b>  
				considered as a list of ascii characters. <br>
 <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;reset <b>(</b><b>)</b>  
				aborts the current grid if there is one. <br>
 <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(dims...)</i> grid<b>)</b>   
				this is the equivalent of filtering this grid through 
				an <kbd><font color="#007777">[#export]</font></kbd> object and sending the resulting integers 
				to this <kbd><font color="#007777">[#import]</font></kbd> object, except that it's over 
				10 times faster. <br>
   <br><b>inlet&nbsp;1 </b><b>method</b>&nbsp;per_message <b>(</b><b>)</b>  
				old synonym for "shape per_message" <br>
   <br><b>outlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid</i> grid<b>)</b>  
				the grid produced from incoming integers and/or grids. <br>
  <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="#export">#export</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <p>this object is the opposite of #import.</p> <br><b>method</b>&nbsp;init <b>(</b><b>)</b>  
			this object is not configurable because there isn't 
			anything that could possibly be configured here. <br>
  <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(dims...)</i> grid<b>)</b>  
				transforms this grid into a sequence of integer messages. <br>
   <br><b>outlet&nbsp;0 </b><b>method</b>&nbsp;int <b>(</b><b>)</b>  
				elements of the incoming grid. <br>
  <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="#export_list">#export_list</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <p>this object is another opposite of <kbd><font color="#007777">[#import]</font></kbd>, which puts 
		all of its values in a list.</p> <br><b>method</b>&nbsp;init <b>(</b><b>)</b> <br>
  <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(dims...)</i> grid<b>)</b>  
				transforms this grid into a single message containing 
				a list of integers. <br>
   <br><b>outlet&nbsp;0 </b><b>method</b>&nbsp;list <b>(</b><b>)</b>  
				elements of the incoming grid. <br>
  <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="#export_symbol">#export_symbol</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <p>this object is another opposite of #import, which constructs a symbol 
		from its input. The values are expected to be valid ASCII codes, but no check 
		will be performed for that, and additionally, no check will be made that the generated 
		symbol only contains characters that can be put in a symbol.</p> <br><b>method</b>&nbsp;init <b>(</b><b>)</b> <br>
  <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(dims...)</i> grid<b>)</b>  
				transforms this grid into a single message containing 
				a list of integers. <br>
  <br><b>outlet&nbsp;0 </b><b>method</b>&nbsp;symbol <b>(</b><b>)</b> generated symbol<br>
 <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="#pack">#pack</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <p>Similar to <kbd><font color="#007777">[#join]</font></kbd>, but takes individual integers, and builds a Dim(N) vector out of it. </p> <br><b>attr</b>&nbsp;trigger_by <b>(</b><b><i>TriggerBy</i> trigger_by</b><b>)</b>  <br><b>method</b>&nbsp;init <b>(</b><i>integer</i> inputs<b>)</b>   <br>
 <br><b>inlet&nbsp;* </b><b>method</b>&nbsp;int <b>(</b><b>)</b> <br>
 <br><b>outlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><b>)</b>  
			combination of inputs given in all inlets. 
			this is produced according to the value of the trigger attribute. <br>
 <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="#color">#color</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <p>Triple slider for the selection of RGB values.</p> <br><b>method</b>&nbsp;init <b>(</b><i>float</i> min<b>, </b><i>float</i> max<b>, </b><i>0,1</i> hidepreview<b>)</b>     <br>
 <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><b>)</b>  
			changes all three values (R,G,B). The grid must 
			be a Dim(3). <br>
 <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;delegate <b>(</b><b>)</b>  
			sends the rest of the message to each of the three sliders. 
			this relies on the fact that [#color] is implemented using 
			three [hsl] and this might not still work in the far future. <br>
 <br><b>outlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><b>)</b>  
			Produces a Dim(3) grid of RGB values. <br>
 <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="#unpack">#unpack</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <br><b>method</b>&nbsp;init <b>(</b><i>integer</i> outputs<b>)</b>   <br>
 <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;grid(N) <b>(</b><b>)</b>  
			the input vector is split in N parts containing one number each. 
			numbers are sent left-to-right, that is, outlet 0 is triggered first, then outlet 1, etc. <br>
 <br><b>outlet&nbsp;* </b><b>method</b>&nbsp;int <b>(</b><b>)</b>  <br>
 <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="#centroid">#centroid</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <br><b>method</b>&nbsp;init <b>(</b><b>)</b> <br>
 <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;grid(rows,columns,1) <b>(</b><b>)</b>  
			will compute the centroid of the given grid, which 
			is a weighted average, namely, the average position weighted 
			by the pixel values. <br>
  <br><b>outlet&nbsp;0 </b><b>method</b>&nbsp;grid(2) <b>(</b><b>)</b>  
			result <br>
  <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="#for">#for</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <p>when given scalar bounds, works like a regular <kbd><font color="#007777">[for]</font></kbd> object plugged 
		to a <kbd><font color="#007777">[#import]</font></kbd> tuned for a Dim(size) where size is the number of values 
		produced by a bang to that <kbd><font color="#007777">[for]</font></kbd>.</p> <p>when given vector bounds, will work like any number of [for] objects 
		producing all possible combinations of their values in the proper order. 
		This replaces the old <kbd><font color="#007777">[#identity_transform]</font></kbd> object.</p> <br><b>method</b>&nbsp;init <b>(</b><i>integer</i> from<b>, </b><i>integer</i> to<b>, </b><i>integer</i> step<b>)</b>     <br>
 <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(index)</i> grid<b>)</b>  
			replaces the "from" value and produces output. <br>
 <br><b>inlet&nbsp;1 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(index)</i> grid<b>)</b>  
			replaces the "to" value. <br>
 <br><b>inlet&nbsp;2 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(index_steps)</i> grid<b>)</b>  
			replaces the "step" value. <br>
  <br><b>outlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(size)</i> grid<b>)</b>  
				where size is floor((to-from+1)/step) 
				[for scalar bounds] <br>
 <br><b>outlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(*size,dimension)</i> grid<b>)</b>  
				where *size is floor((to-from+1)/step) 
				[for vector bounds] <br>
  <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td>&nbsp;</td></tr>
 <tr><td colspan="4" bgcolor="black">
<img src="images/black.png" width="1" height="2"></td></tr>
<tr><td colspan="4"><a name="Objects_for_Computing"></a><h4>Objects for Computing</h4></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="#">#</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <br><b>attr</b>&nbsp;op <b>(</b><b><i>grid</i> op</b><b>)</b>  <br><b>attr</b>&nbsp;right_hand <b>(</b><b><i>grid</i> right_hand</b><b>)</b>  <p>This object outputs a grid by computing "in parallel" a same 
		operation on each left-hand element with its corresponding right-hand 
		element. </p> <br><b>method</b>&nbsp;init <b>(</b>op<b>, </b>right_hand<b>)</b>    <br>
  <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(dims...)</i> grid<b>)</b>  
				on each element of this grid, perform the operation 
				together with the corresponding element of inlet 1. 
				in the table of operators (at the top of this document) 
				elements of inlet 0 are called "A" and elements of inlet 1 
				are called "B". the resulting grid is the same size as the 
				one in inlet 0. <br>
   <br><b>inlet&nbsp;1 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(dims...)</i> grid<b>)</b>  
				any grid, preferably shaped like the one that will be put 
				in the left inlet, or like a subpart of it (anyway the contents 
				will be redim'ed on-the-fly to fit the grid of inlet-0, 
				but the stored grid will not be modified itself) <br>
 <br><b>inlet&nbsp;1 </b><b>method</b>&nbsp;int <b>(</b><b>)</b>  
				stores a single int in the right inlet; the same int will 
				be applied in all computations; this is like sending a 
				Dim(1) or Dim() grid with that number in it. <br>
   <br><b>outlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid</i> grid<b>)</b>  <br>
  <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="@complex_sq">@complex_sq</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <p>this object computes the square of complex numbers. 
		If seeing imaginary as Y and real as X, then this operation squares 
		the distance of a point from origin and doubles the angle between it 
		and the +X half-axis clockwise. (fun, eh?) </p> <p>used on an indexmap, this makes each thing appear twice, 
		each apparition spanning half of the original angle.</p> <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(dims... {imaginary real})</i> grid<b>)</b>   <br>
 <br><b>outlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(dims... {imaginary real})</i> grid<b>)</b>   <br>
 <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="#fold">#fold</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <p><ul> <li><b>1</b> : <kbd><font color="#007777">[#fold +]</font></kbd> computes totals</li> <li><b>2</b> : <kbd><font color="#007777">[#fold inv+]</font></kbd> is an alternated sum (+/-)</li> <li><b>3</b> : <kbd><font color="#007777">[#fold * 1]</font></kbd> can compute the size of a grid using its dimension list</li> <li><b>4</b> : <kbd><font color="#007777">[#fold &amp; 1]</font></kbd> can mean "for all"</li> <li><b>5</b> : <kbd><font color="#007777">[#fold | 0]</font></kbd> can mean "there exists (at least one)"</li> <li><b>6</b> : <kbd><font color="#007777">[#fold ^ 0]</font></kbd> can mean "there exists an odd number of..."</li> <li><b>7</b> : <kbd><font color="#007777">[#fold ^ 1]</font></kbd> can mean "there exists an even number of...".</li> </ul></p> <br><b>method</b>&nbsp;init <b>(</b><i>numop2</i> operator<b>, </b><i>grid</i> seed<b>, </b><i>grid</i> right_hand<b>)</b>     <br>
  <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(dims..., last)</i> grid<b>)</b>  
				replaces every Dim(last) subgrid by the result of a cascade on that subgrid. 
				Doing that 
				with seed value 0 and operation + on grid "2 3 5 7" will compute 
				((((0+2)+3)+5)+7) find the total "17". 
				produces a Dim(dims) grid. <br>
    <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="#scan">#scan</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <p><kbd><font color="#007777">[#scan +]</font></kbd> computes subtotals; this can be used, for example, 
		to convert a regular probability distribution into a cumulative one. 
		(or in general, discrete integration) </p> <br><b>method</b>&nbsp;init <b>(</b><i>numop2</i> operator<b>, </b><i>grid</i> seed<b>)</b>    <br>
  <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(dims..., last)</i> grid<b>)</b>  
				replaces every Dim(last) subgrid by all the results of 
				cascading the operator on that subgrid, 
				producing a Dim(dims,last) grid. 
				For example, with base value 0 and operation + on grid "2 3 5 
				7" will compute 0+2=2, 2+3=5, 5+5=10, 10+7=17, and give the 
				subtotals "2 5 10 17". <br>
     <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="#outer">#outer</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <br><b>method</b>&nbsp;init <b>(</b><i>numop2</i> operator<b>, </b><i>grid</i> value<b>)</b>    
			the operator must be picked from the table of two-input operators. 
			the grid is optional and corresponds to inlet 1. <br>
  <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(anyA...)</i> grid<b>)</b> <br>
 
			produces a grid of size Dim(anyA..., anyB...), where numbers 
			are the results of the operation on every element of A and 
			every element of B. the resulting array can be very big. Don't 
			try this on two pictures (the result will have 6 dimensions)   <br><b>inlet&nbsp;1 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(anyB...)</i> grid<b>)</b> <br>
 
			stores the specified grid, to be used when inlet 0 is activated.    <p>When given a grid of Dim(3) and a grid of Dim(5) <kbd><font color="#007777">[#outer]</font></kbd> will 
		produce  a grid of Dim(3,5) with the selected two-input operation 
		applied on each  of the possible pairs combinations between numbers 
		from the left grid  and the ones from the right. for example : 
		(10,20,30) [#outer +] (1,2,3)  will give : 
		((11,12,13),(21,22,23),(31,32,33)) </p> <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="#inner">#inner</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <p>think of this one as a special combination of <kbd><font color="#007777">[#outer]</font></kbd>, <kbd><font color="#007777">[#]</font></kbd> and <kbd><font color="#007777">[#fold]</font></kbd>. this is one of the most complex operations. It is very useful 
		for performing linear transforms like rotations, scalings, shearings, 
		and some kinds of color remappings. A linear transform is done by 
		something called matrix multiplication, which happens to be <kbd><font color="#007777">[#inner * + 
		0]</font></kbd>. <kbd><font color="#007777">[#inner]</font></kbd> also does dot product and other funny operations.</p> <br><b>method</b>&nbsp;init <b>(</b><i>grid</i> right_hand<b>)</b>   <br>
  <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(anyA..., lastA)</i> grid<b>)</b>  
				Splits the Dim(anyA...,lastA) left-hand grid into Dim(anyA...) 
				pieces of Dim(lastA) size. 
				Splits the Dim(firstB,anyB...) right-hand grid into 
				Dim(anyB...) pieces of Dim(firstB) size. 
				On every piece pair, does <kbd><font color="#007777">[#]</font></kbd> using the specified 
				op_para operation, followed by a <kbd><font color="#007777">[#fold]</font></kbd> using 
				the specified op_fold operator and base value. 
				creates a Dim(anyA...,anyB...) grid by assembling all 
				the results together. 
				(note: lastA must be equal to firstB.) <br>
 <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;op <b>(</b><i>numop</i> op<b>)</b>  
				the operation that combines the values from the two grids together. 
				this defaults to "*" (as in the matrix product) <br>
 <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;fold <b>(</b><i>numop</i> op<b>)</b>  
				the operation that combines the result of the "op" operations together. 
				this defaults to "+" (as in the matrix product) <br>
   <br><b>inlet&nbsp;1 </b><b>method</b>&nbsp;int <b>(</b><b>)</b>  
				changes the base value to that. <br>
   <br><b>inlet&nbsp;2 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(anyB..., lastB)</i> grid<b>)</b>  
				changes the right-hand side grid to that. <br>
    <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="@join">@join</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <br><b>method</b>&nbsp;init <b>(</b>which_dim<b>)</b>   
			Which_dim is the number of the dimension by which the join will 
			occur. For N-dimensional grids, the dimensions are numbered from 0 
			to N-1. In addition, negative numbers from -N to -1 may be used, to 
			which N will be added. <br>
  <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid</i> grid<b>)</b>  
				The left grid and right grid must have the same number 
				of elements in all dimensions except the one specified. 
				The result will have the same number of elements in all 
				dimensions except the one specified, which will be the 
				sum of the two corresponding one. <p>For example, joining a RGB picture Dim[y,x,3] and a 
				greyscale picture Dim[y,x,1] on dimension 2 (or -1) could 
				make a RGBA picture Dim[y,x,4] in which the greyscale image 
				becomes the opacity channel. </p> <br>
  <br><b>inlet&nbsp;1 </b><b>method</b>&nbsp;grid <b>(</b><i>grid</i> grid<b>)</b> <br>
   <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="#finished">#finished</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
  <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid</i> grid<b>)</b> any grid<br>
   
			a bang is emitted every time a grid transmission ends.  <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="#cast">#cast</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <br><b>method</b>&nbsp;init <b>(</b><i>numbertype</i> numbertype<b>)</b>   <br>
  <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid</i> grid<b>)</b> any grid<br>
   <br><b>outlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid</i> grid<b>)</b> a grid of the same shape containing all the same 
			values after type conversion. note that while casting to 
			a smaller type, values that are overflowing will be truncated. <br>
  <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="#ravel">#ravel</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid</i> grid<b>)</b> any grid<br>
 <br><b>outlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid</i> grid<b>)</b>  
			like <kbd><font color="#007777">[#redim]</font></kbd> but always produce a 1-D grid 
			with the same total number of elements. <br>
 <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="#grade">#grade</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid</i> grid<b>)</b> any grid<br>
 <br><b>outlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid</i> grid<b>)</b>  <p>splits a Dim[A...,B] grid into Dim[B] vectors, 
			producing new Dim[B] vectors that each contain numbers from 
			0 to B-1 indicating the ordering of the values. The result is 
			a Dim[A...,B] grid.</p> <p>for example, connecting a [#grade] to a <kbd><font color="#007777">[#outer ignore {0}]</font></kbd> 
			to a <kbd><font color="#007777">[#store]</font></kbd> object, storing a single vector into <kbd><font color="#007777">[#store]</font></kbd>, and 
			sending the same vector to <kbd><font color="#007777">[#grade]</font></kbd>, will sort the values of the 
			vector. however for higher-dimensional grids, what should go 
			between <kbd><font color="#007777">[#store]</font></kbd> and <kbd><font color="#007777">[#grade]</font></kbd> to achieve the same result would 
			be more complex.</p> <p>you may achieve different kinds of sorting by applying various 
			filters before <kbd><font color="#007777">[#grade]</font></kbd>. the possibilities are unlimited.</p> <p>if you plug <kbd><font color="#007777">[#grade]</font></kbd> directly into another <kbd><font color="#007777">[#grade]</font></kbd>, you will 
			get the inverse arrangement, which allows to take the sorted values 
			and make them unsorted in the original way. note that this is really 
			not the same as just listing the values backwards.</p> <br>
 <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="#perspective">#perspective</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <br><b>method</b>&nbsp;init <b>(</b><i>integer</i> depth<b>)</b>   <br>
 <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid</i> grid<b>)</b> any grid<br>
 <br><b>outlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid</i> grid<b>)</b>  <p>transforms a Dim[A...,B] grid into a Dim[A...,B-1] grid. 
			There is a projection plane perpendicular to the last axis and 
			whose position is given by the "depth" parameter. Each vector's 
			length is adjusted so that it lies onto that plane. Then the 
			last dimension of each vector is dropped.</p> <p>useful for converting from 3-D geometry to 2-D geometry. Also 
			useful for converting homogeneous 3-D into regular 3-D, as 
			homogeneous 3-D is really just regular 4-D...(!)</p> <br>
 <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="#transpose">#transpose</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <br><b>method</b>&nbsp;init <b>(</b><i>integer</i> dim1<b>, </b><i>integer</i> dim2<b>)</b>    <br>
 <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid</i> grid<b>)</b>  
			swaps the two specified dimensions; dimension numbers are as in <kbd><font color="#007777">[#join]</font></kbd>. <br>
 <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="#fade">#fade</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <br><b>method</b>&nbsp;init <b>(</b><i>integer</i> rate<b>)</b>   <br>
 <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid</i> grid<b>)</b>  
			produces on outlet 0 a linear recurrent fading according to the flow of 
			incoming messages. For example, if rate=5, then 20% (one fifth) 
			of each new message will be blended with 80% of the previous output. <br>
 <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="#fade_lin">#fade_lin</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <br><b>method</b>&nbsp;init <b>(</b><i>integer</i> maxraise<b>, </b><i>integer</i> maxdrop<b>)</b>    <br>
 <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid</i> grid<b>)</b>  
			produces on outlet 0 a piecewise-linear nonrecurrent fading according to the flow of 
			incoming messages. For example, if maxraise=2 and maxdrop=4, then with each 
			new message an output is produced that is at most 2 more or 4 less than the 
			previous output. <br>
 <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="#reverse">#reverse</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <br><b>method</b>&nbsp;init <b>(</b>whichdim<b>)</b>   
			Whichdim is the number of the dimension by which the reverse will 
			occur. For N-dimensional grids, the dimensions are numbered from 0 
			to N-1. In addition, negative numbers from -N to -1 may be used, to 
			which N will be added. <br>
 <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td>&nbsp;</td></tr>
 <tr><td colspan="4" bgcolor="black">
<img src="images/black.png" width="1" height="2"></td></tr>
<tr><td colspan="4"><a name="Objects_for_Coordinate_Transforms"></a><h4>Objects for Coordinate Transforms</h4></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="#redim">#redim</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <br><b>method</b>&nbsp;init <b>(</b><i>dim_list</i> dims<b>)</b>   
			a list specifying a grid shape that the numbers 
			will fit into. 
			(same as with <kbd><font color="#007777">[#import]</font></kbd>) <br>
  <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(dims...)</i> grid<b>)</b>  
			the elements of this grid are serialized. if the resulting grid 
			must be larger, the sequence is repeated as much as necessary. 
			if the resulting grid must be smaller, the sequence is truncated. 
			then the elements are deserialized to form the resulting grid. <br>
   <br><b>inlet&nbsp;1 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(rank)</i> grid<b>)</b>  
				this grid is a dimension list that replaces the one 
				specified in the constructor. 
				(same as with <kbd><font color="#007777">[#import]</font></kbd>) <br>
   <br><b>outlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid</i> grid<b>)</b>  
				redimensioned grid potentially containing repeating data. <br>
  <p>example: with a 240 320 RGB image, <kbd><font color="#007777">[#redim 120 640 3]</font></kbd> will visually 
		separate the even lines (left) from the odd lines (right). contrary 
		to this, <kbd><font color="#007777">[#redim 640 120 3]</font></kbd> will split every line and put its left half 
		on a even line and the right half on the following odd line. <kbd><font color="#007777">[#redim]</font></kbd> 
		480 320 3 will repeat the input image twice in the output image. <kbd><font color="#007777">[#redim]</font></kbd> 240 50 3 will only keep the 50 top lines.</p> <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="#store">#store</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <p>A <kbd><font color="#007777">[#store]</font></kbd> object can store exactly one grid, using the right 
		inlet. You fetch it back, or selected subparts thereof, using the left 
		inlet.</p> <br><b>method</b>&nbsp;init <b>(</b><i>grid</i> contents<b>)</b>   <br>
  <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;bang <b>(</b><b>)</b>  
				the stored grid is fully sent to the outlet. <br>
 <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(dims..., indices)</i> grid<b>)</b>  
				in this grid, the last dimension refers to subparts of 
				the stored grid. sending a Dim(200,200,2) on a <kbd><font color="#007777">[#store]</font></kbd> 
				that holds a Dim(240,320,3) will cause the <kbd><font color="#007777">[#store]</font></kbd> to handle 
				the incoming grid as a Dim(200,200) of Dim(2)'s, where each 
				Dim(2) represents a position in a Dim(240,320) of Dim(3)'s. 
				therefore the resulting grid will be a Dim(200,200) of 
				Dim(3) which is a Dim(200,200,3). in practice this example 
				would be used for generating a 200*200 RGB picture from a 
				200*200 XY map and a 240*320 RGB picture. this object can 
				be logically used in the same way for many purposes 
				including color palettes, tables of probabilities, tables 
				of statistics, whole animations, etc. <br>
   <br><b>inlet&nbsp;1 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(dims...)</i> grid<b>)</b>  
			replace the whole grid, or a subpart of it (see other options on inlet 1) <br>
   <br><b>inlet&nbsp;1 </b><b>method</b>&nbsp;reassign <b>(</b><b>)</b> (Future Use): 
				makes it so that sending a grid to inlet 1 detaches the old buffer from [#store] 
				and attaches a new one instead.  This is the default. <br>
 <br><b>inlet&nbsp;1 </b><b>method</b>&nbsp;put_at <b>(</b>indices...<b>)</b> (Future Use): 
				makes it so that sending a grid to inlet 1 writes into the existing buffer of [#store]. <p> 
				example: suppose you have <kbd><font color="#007777">[#store {10 240 320 3}]</font></kbd>. then "put_at 3" 
				will allow to write a Dim[240,320,3] grid in indices (3,y,x,c) where y,x,c are indices of the incoming grid; 
				in other words, if that's a buffer of 10 RGB frames, you'd be replacing frame #3. Furthermore, 
				it also allows you to write a Dim[n,240,320,3] grid at (3+f,y,x,c) where f,y,x,c are indices of the incoming grid, 
				replacing frame #3, #4, ... up to #3+n-1. Here n is at most 7 because the last frame in the buffer is #9. </p> <p>that way of working extends to other kinds of data you'd put in Grids, in any numbers of dimensions; 
				because, as usual, [#store] wouldn't know the difference. </p> <br>
   
			grids as stored, as indexed, or as assembled from multiple 
			indexings.  <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="#scale_to">#scale_to</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <br><b>method</b>&nbsp;init <b>(</b>size<b>)</b>   <br>
  <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid</i> grid<b>)</b> a 3-channel picture to be scaled.<br>
   <br><b>inlet&nbsp;1 </b><b>method</b>&nbsp;int <b>(</b><b>)</b> a {height width} pair.<br>
   <br><b>outlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid</i> grid<b>)</b> a scaled 3-channel picture.<br>
  <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="#scale_by">#scale_by</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <br><b>method</b>&nbsp;init <b>(</b><i>grid dim() or dim(2)</i> factor<b>)</b>   
			factor is optional (default is 2). 
			if it's a single value, then that factor is to be used 
			for both rows and columns. <br>
  <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(y x channels)</i> grid<b>)</b>  
			duplicates each pixel several times in width and several times in height, 
			where the number of times is determined by the factor described above. 
			twice those of the incoming grid. It is several times faster. <br>
  <br><b>inlet&nbsp;1 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(1 or 2)</i> grid<b>)</b> sets factor<br>
  <br><b>outlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid((factor*y) (factor*x) channels)</i> grid<b>)</b>   <br>
  <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="#downscale_by">#downscale_by</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <br><b>method</b>&nbsp;init <b>(</b><i>+integer</i> factor<b>, </b><i>optional symbol(smoothly)</i> how<b>)</b>    
			factor is optional (default is 2). 
			if it's a single value, then that factor is to be used 
			for both rows and columns. <br>
  <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(y x channels)</i> grid<b>)</b>  
			Scales down picture by specified amount. (See scale factor above) <br>
  <br><b>inlet&nbsp;1 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(1 or 2)</i> grid<b>)</b>  sets scale factor<br>
  <br><b>outlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid((factor/y) (factor/x) channels)</i> grid<b>)</b>   <br>
  <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="#spread">#spread</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <p>typically you plug a <kbd><font color="#007777">[#for]</font></kbd> into this object, 
		and you plug this object into the left side of a <kbd><font color="#007777">[#store]</font></kbd>. it will 
		scatter pixels around, giving an "unpolished glass" effect.</p> <p>if you put a picture in it, however, it will add noise. The 
		resulting values may be out of range, so you may need to clip them 
		using min/max.</p> <br><b>method</b>&nbsp;init <b>(</b>factor<b>)</b>   <br>
  <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid</i> grid<b>)</b> a coordinate map.<br>
   <br><b>inlet&nbsp;1 </b><b>method</b>&nbsp;int <b>(</b><b>)</b> a spread factor.<br>
   <br><b>outlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid</i> grid<b>)</b> a coordinate map.<br>
  <p><kbd><font color="#007777">[#spread]</font></kbd> scatters the pixels in an image. Not all original pixels 
		will  appear, and some may get duplicated (triplicated, etc) 
		randomly. Some  wrap-around effect will occur close to the edges. </p> <p> Sending an integer to inlet 1 sets the amount of spreading in 
		maximum  number of pixels + 1. even values translate the whole image 
		by half  a pixel due to rounding.</p> <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="#rotate">#rotate</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <p>performs rotations on indexmaps and polygons and such.</p> <br><b>method</b>&nbsp;init <b>(</b><i>0...35999</i> angle<b>)</b>   <br>
 <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(anyA 2)</i> grid<b>)</b>  <br>
 <br><b>inlet&nbsp;1 </b><b>method</b>&nbsp;int <b>(</b><b>)</b> rotation angle; 0...36000<br>
  <br><b>outlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(anyA 2)</i> grid<b>)</b>   <br>
 <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="#remap_image">#remap_image</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <p>if you chain indexmap (coordinate) transformations from outlet 1 
		to inlet 1, then sending an image in inlet 0 will emit its 
		deformation out of outlet 0.</p>     <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td>&nbsp;</td></tr>
 <tr><td colspan="4" bgcolor="black">
<img src="images/black.png" width="1" height="2"></td></tr>
<tr><td colspan="4"><a name="Objects_for_Reporting"></a><h4>Objects for Reporting</h4></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="#dim">#dim</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <p>Returns list of dimensions as a grid. Given a grid sized like Dim(240,320,4), <kbd><font color="#007777">[#dim]</font></kbd> will return a grid like Dim(3), whose values are 240, 320, 4. </p> <br><b>method</b>&nbsp;init <b>(</b><b>)</b>  
			no arguments. <br>
  <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(dims...)</i> grid<b>)</b>  
				ignores any data contained within. 
				sends a grid dim(length of dims) containing dims. <br>
   <br><b>outlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(rank)</i> grid<b>)</b>  
				the list of dimensions of the incoming grid. <br>
  <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="#type">#type</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <p>gives a symbol representing the numeric type of the grid received. </p> <br><b>outlet&nbsp;0 </b><b>method</b>&nbsp;&lt;numeric type symbol&gt; <b>(</b><b>)</b> <br>
 <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="#print">#print</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <br><b>method</b>&nbsp;init <b>(</b><b>)</b> <br>
  <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(dims...)</i> grid<b>)</b>  
			prints the dimensions of the grid. 
			prints all the grid data if there are 2 dimensions or less. <br>
  <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="display">display</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 
		GUI object equivalent to [print] and [#print]. <br><b>method</b>&nbsp;(any) <b>(</b><b>)</b>  
		Displays the received message in the box, resizing the box so that the message fits exactly. <br>
 <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td>&nbsp;</td></tr>
 <tr><td colspan="4" bgcolor="black">
<img src="images/black.png" width="1" height="2"></td></tr>
<tr><td colspan="4"><a name="Objects_for_Color_Conversion"></a><h4>Objects for Color Conversion</h4></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="#apply_colormap_channelwise">#apply_colormap_channelwise</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <p>This object is useful for color correction. For each pixel 
		it takes it apart, looks up each part separately in the colormap, 
		and constructs a new pixel from that. You may also color-correct 
		colormaps themselves.</p> <p>Only works for things that have 3 channels.</p> <p>Note: if you just need to apply a palette on an indexed-color 
		picture, you don't need this. Just use #store instead.</p> <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(rows columns channels)</i> grid<b>)</b>   
			picture <br>
  <br><b>inlet&nbsp;1 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(intensities channels)</i> grid<b>)</b>   
			colormap ("palette") <br>
 <br><b>outlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(rows columns channels)</i> grid<b>)</b>   
			picture <br>
 <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="#rgb_to_greyscale">#rgb_to_greyscale</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(rows columns {red green blue})</i> grid<b>)</b>   <br>
 <br><b>outlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(rows columns {white})</i> grid<b>)</b>  <br>
  <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="#greyscale_to_rgb">#greyscale_to_rgb</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(rows columns {white})</i> grid<b>)</b>  <br>
  <br><b>outlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(rows columns {red green blue})</i> grid<b>)</b>   <br>
 <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="#yuv_to_rgb">#yuv_to_rgb</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <p>note: may change slightly to adapt to actual video standards.</p> <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(rows columns {y u v})</i> grid<b>)</b>  <br>
  <br><b>outlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(rows columns {red green blue})</i> grid<b>)</b>   <br>
 <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="#rgb_to_yuv">#rgb_to_yuv</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <p>note: may change slightly to adapt to actual video standards.</p> <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(rows columns {red green blue})</i> grid<b>)</b>  <br>
  <br><b>outlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(rows columns {y u v})</i> grid<b>)</b>   <br>
 <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td>&nbsp;</td></tr>
 <tr><td colspan="4" bgcolor="black">
<img src="images/black.png" width="1" height="2"></td></tr>
<tr><td colspan="4"><a name="Objects_for_Miscellaneous_Picture_Processing"></a><h4>Objects for Miscellaneous Picture Processing</h4></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="#convolve">#convolve</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <p>this is the object for blurring, sharpening, finding edges, 
		embossing, cellular automata, and many other uses.</p> <br><b>method</b>&nbsp;init <b>(</b><i>numop2</i> op_para<b>, </b><i>numop2</i> op_fold<b>, </b><i>grid</i> seed<b>, </b><i>grid</i> right_hand<b>)</b>      <br>
  <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(rows columns rest...)</i> grid<b>)</b>   
				splits the incoming grid into dim(rest...) parts. 
				for each of those parts at (y,x), a rectangle of such 
				parts, centered around (y,x), is combined with the 
				convolution grid like a <kbd><font color="#007777">[#]</font></kbd> of operation op_para. Then 
				each such result is folded like <kbd><font color="#007777">[#fold]</font></kbd> of operation 
				op_fold and specified base. the results are assembled 
				into a grid that is sent to the outlet. near the borders of 
				the grid, coordinates wrap around. this means the whole grid 
				has to be received before production of the next grid 
				starts. <br>
   <br><b>inlet&nbsp;1 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(rows2 columns2)</i> grid<b>)</b>   
				this is the convolution grid and it gets stored in 
				the object. if rows2 and/or columns2 are odd numbers, 
				then the centre of convolution is the middle of the convolution 
				grid. if they are even numbers, then the chosen centre will 
				be slightly more to the left and/or to the top, because the 
				actual middle is between cells of the grid. <br>
   <br><b>outlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(rows columns rest...)</i> grid<b>)</b>   <br>
  <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="#contrast">#contrast</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <br><b>method</b>&nbsp;init <b>(</b>iwhiteness<b>, </b>contrast<b>)</b>    <br>
  <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(rows columns channels)</i> grid<b>)</b>   
			produces a grid like the incoming grid but with 
			different constrast. <br>
 <p><kbd><font color="#007777">[#contrast]</font></kbd> adjusts the intensity in an image. 
			resulting values outside 0-255 are automatically clipped.</p>   <br><b>inlet&nbsp;1 </b><b>method</b>&nbsp;int <b>(</b><b>)</b>  
			this is the secondary contrast (inverse whiteness). 
			it makes the incoming black 
			correspond to a certain fraction between output black and the 
			master contrast value. no effect is 256. default value is 256. <br>
   <br><b>inlet&nbsp;2 </b><b>method</b>&nbsp;int <b>(</b><b>)</b>  
			this is the master contrast. it makes the incoming white 
			correspond to a certain fraction between output black and output 
			white. no effect is 256. default value is 256. <br>
   <br><b>outlet&nbsp; </b><b>method</b>&nbsp;grid <b>(</b><i>grid(rows columns channels)</i> grid<b>)</b>   <br>
  <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="#posterize">#posterize</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <p><kbd><font color="#007777">[#posterize]</font></kbd> reduces the number of possible intensities in an image; 
		it rounds the color values.The effect is mostly apparent with a low 
		number of levels.</p> <br><b>method</b>&nbsp;init <b>(</b>levels<b>)</b>   <br>
  <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(rows columns channels)</i> grid<b>)</b>   
				produces a posterized picture from the input picture. <br>
   <br><b>inlet&nbsp;1 </b><b>method</b>&nbsp;int <b>(</b><b>)</b>  
				this is the number of possible levels per channel. the 
				levels are equally spaced, with the lowest at 0 and the 
				highest at 255. the minimum number of levels is 2, and the 
				default value is 2. <br>
    <p>example: simulate the 216-color "web" palette using 6 levels. 
		simulate a 15-bit display using 32 levels.</p> <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="#solarize">#solarize</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <p>makes medium intensities brightest; formerly brightest colours 
		become darkest; formerly darkest stays darkest. This filter is linear: 
		it's like a 200% contrast except that overflows are <i>mirrored</i> 
		instead of clipped or wrapped.</p>  <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(rows columns channels)</i> grid<b>)</b>  <br>
   <br><b>outlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(rows columns channels)</i> grid<b>)</b>  <br>
  <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="#checkers">#checkers</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
  <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(y x {y x})</i> grid<b>)</b>   
				result from a <kbd><font color="#007777">[#for {0 0} {height width} {1 1}]</font></kbd> <br>
   <br><b>outlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(y x {r g b})</i> grid<b>)</b>   
				checkered pattern of 50%/75% greys 
				in 8x8 squares <br>
  <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="#layer">#layer</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
  <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(y x {r g b a})</i> grid<b>)</b>   
				a picture that has an opacity channel. 
				will be used as foreground. <br>
   <br><b>inlet&nbsp;1 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(y x {r g b})</i> grid<b>)</b>   
				a picture that has NO opacity channel. 
				will be used as background. <br>
   <br><b>outlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(y x {r g b})</i> grid<b>)</b>   
				a picture that has NO opacity channel. 
				the opacity channel of the foreground is used as 
				a weighting of how much of either picture is seen 
				in the result. <br>
  <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="#draw_image">#draw_image</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <br><b>method</b>&nbsp;init <b>(</b><i>numop2</i> operator<b>, </b><i>grid(y,x,channels)</i> picture<b>, </b><i>grid({y x})</i> position<b>)</b>     <br>
  <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(y x channels)</i> grid<b>)</b>  
				picture onto which another picture will be superimposed. <br>
 <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;tile <b>(</b><i>0 or 1</i> flag<b>)</b>  
				if enabled, inlet 1 picture will be repeated to cover the inlet 0 picture. <br>
 <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;alpha <b>(</b><i>0 or 1</i> flag<b>)</b>  
				if enabled, inlet 1 picture will be combined with inlet 0 picture using 
				the selected operator, 
				and then blended with inlet 0 picture according to transparency of 
				the inlet 1 picture, and then inserted in the result. 
				if disabled, the blending doesn't occur, as the transparency level 
				is considered to be "opaque". note that with alpha enabled, 
				the last channel of inlet 1 picture is considered to represent transparency. <br>
   <br><b>inlet&nbsp;1 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(y x channels)</i> grid<b>)</b>  
				picture that will be superimposed onto another picture. <br>
   <br><b>inlet&nbsp;2 </b><b>method</b>&nbsp;grid <b>(</b><i>grid({y x})</i> grid<b>)</b>  
				position of the inlet 0 picture corresponding to top-left corner 
				of inlet 1 picture. <br>
   <br><b>outlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(y x channels)</i> grid<b>)</b>  
				resulting picture. <br>
  <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="#draw_polygon">#draw_polygon</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <br><b>method</b>&nbsp;init <b>(</b><i>numop2</i> operator<b>, </b><i>grid(channels)</i> color<b>, </b><i>grid(vertices,{y x})</i> vertices<b>)</b>     <br>
  <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(y x channels)</i> grid<b>)</b>  
				picture on which the polygon will be superimposed. <br>
   <br><b>inlet&nbsp;1 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(channels)</i> grid<b>)</b>  
				color of each pixel <br>
   <br><b>inlet&nbsp;2 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(vertices {y x})</i> grid<b>)</b>  
				vertices of the polygon. <br>
   <br><b>outlet&nbsp;0 </b><b>method</b>&nbsp;grid <b>(</b><i>grid(y x channels)</i> grid<b>)</b>   
				modified picture. 
				note: starting with 0.7.2, drawing a 1-by-1 
				square really generates a 1-by-1 square, and 
				so on. This is because the right-hand border of a 
				polygon is excluded, whereas it was included 
				before, leading to slightly-wider-than-expected polygons. <br>
  <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="#text_to_image">#text_to_image</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <p>inlet 2 receives a font grid, for example, [#in grid file lucida-typewriter-12.grid.gz]</p> <p>inlet 1 receives a 2 by 3 matrix representing the colours to use (e.g. (2 3 # 0 170 0 255 255 0) means yellow on green)</p> <p>inlet 0 receives a bang, transforming the data into an image suitable for #draw_image.</p> <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="#hueshift">#hueshift</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <p>inlet 1 receives an angle (0..36000)</p> <p>inlet 0 receives a RGB picture that gets hueshifted by a rotation in the colorwheel by the specified angle; it gets sent to outlet 0.</p> <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td>&nbsp;</td></tr>
 <tr><td colspan="4" bgcolor="black">
<img src="images/black.png" width="1" height="2"></td></tr>
<tr><td colspan="4"><a name="Other_Objects"></a><h4>Other Objects</h4></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="rtmetro">rtmetro</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
This class has been removed (0.7.7).<br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="bindpatcher">bindpatcher</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <p>sets the receive-symbol for the Pd patcher it is in.</p> <p>has no inlets, no outlets.</p> <p>EXPERIMENTAL.</p> <br><b>method</b>&nbsp;init <b>(</b><i>symbol</i> symbol<b>)</b>   <br>
 <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="pingpong">pingpong</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 
		Transforms linear counting (0, 1, 2, 3, 4, ...)  into a back-and-forth counting (0, 1, 2, 1, 0, ...) 
		from 0 to a specified upper bound. <br><b>method</b>&nbsp;init <b>(</b><i>int</i> top<b>)</b>   <br>
  <br><b>inlet&nbsp;1 </b><b>method</b>&nbsp;float <b>(</b><i>float</i> top<b>)</b> <br>
   <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;float <b>(</b><b>)</b>  
				a value to be transformed. 
				If, for example, top=10, then values 0 thru 10 are left unchanged, 
				values 11 thru 19 are mapped to 9 thru 1 respectively, and 20 thru 30 
				are mapped to 0 thru 10, and so on. <br>
  <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="#global">#global</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <p> 
		objects of this class do nothing by themselves and are just 
		an access point to features that don't belong to any object in 
		particular. </p> <br><b>method</b>&nbsp;profiler_reset <b>(</b><b>)</b>  
			resets all the time counters. <br>
 <br><b>method</b>&nbsp;profiler_dump <b>(</b><b>)</b>  
			displays the time counters in decreasing order, with 
			the names of the classes those objects are in. this is 
			an experimental feature. like most statistics, 
			it could be vaguely relied upon if 
			only you knew to which extent it is unreliable. more on this 
			in a future section called "profiling". <br>
 <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="fps">fps</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <br><b>method</b>&nbsp;init <b>(</b><i>symbol(real|user|system|cpu)</i> clocktype<b>, </b><i>symbol(detailed)</i> detailed<b>)</b>    <br>
 <br><b>method</b>&nbsp;init detailed <b>(</b><b>)</b>  <br>
  <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;bang <b>(</b><b>)</b>  
			Times at which bangs are received are stored until a large 
			enough sample of those is accumulated. Large enough is defined 
			to be whenever the timespan exceeds one second. Then a report 
			is made through the outlet. <br>
 <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;(else) <b>(</b><b>)</b>  
				messages other than bangs are ignored. <br>
   <br><b>outlet&nbsp;0 </b><b>method</b>&nbsp;float <b>(</b><b>)</b>  
			non-detailed mode only. 
			this is the messages-per-second rating. <br>
 <br><b>outlet&nbsp;0 </b><b>method</b>&nbsp;list(float,6) <b>(</b><b>)</b>  
			detailed mode only. 
			this is: messages-per-second, followed by five values of 
			milliseconds-per-message: minimum, median, maximum, average, 
			standard deviation. 
			(the average happens to be simply 1000 divided by the 
			messages-per-second, but it is convenient to have it anyway) <br>
  <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="unix_time">unix_time</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <p> 
		This object returns the Unix timestamp. The first 
		outlet does so with ASCII, the second in seconds and the third outlet 
		outputs the fractions of seconds up to 1/100 000 th of a second which is useful for creating 
		filenames. </p> <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;bang <b>(</b><b>)</b> <br>
 <br><b>outlet&nbsp;0 </b><b>method</b>&nbsp;symbol <b>(</b><b>)</b> <br>
Outputs the time and date in ASCII format <br><b>outlet&nbsp;1 </b><b>method</b>&nbsp;float <b>(</b><b>)</b> <br>
Outputs the Unix timestamp in seconds <br><b>outlet&nbsp;2 </b><b>method</b>&nbsp;float <b>(</b><b>)</b> <br>
Outputs the fractions of a second up to 10 microseconds (?) (actual precision is platform-dependent afaik) <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="ls">ls</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <p> 
		This object is similar to the Unix list command 
		'ls'. It returns the names of files in a given 
		directory.  May be used with [listlength] to retrieve the number of files. 
		Hidden files are displayed. </p> <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;symbol <b>(</b><b>)</b>  
			lists all files in a given directory <br>
 <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;glob <b>(</b><b>)</b>  
			lists all files matching a given pattern. 
			"symbol hello" is like "glob hello/*" <br>
 <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="exec">exec</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <p> 
		This object launches a Unix shell program or script. </p> <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;symbol <b>(</b><b>)</b> <br>
 <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="renamefile">renamefile</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <p> 
		This object accepts a list of two elements as arguments. 
		The current file name being the first and the second is the desired change 
		in name. </p> <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;list <b>(</b><b>)</b> <br>
 <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="plotter_control">plotter_control</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <p> 
		This object produces HPGL instructions in ASCII form 
		that can be sent to the comport object in order to control an HPGL 
		compatible plotter. </p> <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;symbol <b>(</b><b>)</b> <br>
 <br><b>outlet&nbsp;0 </b><b>method</b>&nbsp;symbol <b>(</b><b>)</b> <br>
Outputs the HPGL commands in ASCII format <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="rubyarray">rubyarray</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <p>inlet 0 float : sends the specified array entry to outlet 0</p> <p>inlet 1 list: writes that list as an array entry in position last specified by inlet 0.</p> <p>inlet 0 save(symbol filename): writes the array contents to a file of the given filename as a CSV</p> <p>inlet 0 save(symbol filename, symbol format): same thing but using a sprintf string such as %x,%f or whatever</p> <p>inlet 0 load(symbol filename): replace all array contents by the contents of a CSV file</p> <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td>&nbsp;</td></tr>
 <tr><td colspan="4" bgcolor="black">
<img src="images/black.png" width="1" height="2"></td></tr>
<tr><td colspan="4"><a name="jMax_emulation"></a><h4>jMax emulation</h4></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td></td><td></td><td><p>those classes emulate jMax functionality, 
	for use within PureData and Ruby.</p></td></tr>
<tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="fork">fork</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <p>Every incoming message is sent to inlet 1 and then sent to 
		inlet 0 as well. Messages remain completely unaltered. Contrast 
		with PureData's "t a a" objects, which have the same purpose but 
		transform bangs into zeros and such.</p> <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;(any) <b>(</b><b>)</b> <br>
   <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="foreach">foreach</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;list <b>(</b>...<b>)</b>  
			Outputs N messages, one per list element, in order. <br>
 <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="rubysprintf">rubysprintf</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <br><b>method</b>&nbsp;init <b>(</b><i>symbol</i> format<b>)</b>   <br>
 <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;list <b>(</b><b>)</b>  
			Outputs the format string with %-codes replaced 
			by elements of the list formatted as the %-codes say. 
			To get a list of those codes, consult a Ruby manual 
			(Equivalently, Perl, Python, Tcl and C all have equivalents of this, 
			and it's almost always called sprintf, or the % operator, or both) <br>
  <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="listflatten">listflatten</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;list <b>(</b>...<b>)</b>  <br>
 <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="listmake">listmake</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 
		Emulation of jMax's [list] (but there cannot be a class named [list] in Pd) <br><b>method</b>&nbsp;init <b>(</b>list...<b>)</b>   <br>
  <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;bang <b>(</b><b>)</b> send "list" to outlet 0<br>
 <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;list <b>(</b><b>)</b> as sending to inlet 1 and then banging; that is, passes thru and remembers.<br>
   <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="listlength">listlength</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;list <b>(</b><b>)</b>  
			outputs the number of elements in the incoming list. <br>
 <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="listelement">listelement</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <br><b>method</b>&nbsp;init <b>(</b><i>int</i> index<b>)</b>   <br>
 <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;list <b>(</b>...<b>)</b>  
			Outputs one element of the list, as selected by "index". 
			Also accepts negative indices (e.g.: -1 means "last"), like Ruby, but unlike jMax. <br>
  <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="listsublist">listsublist</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <br><b>method</b>&nbsp;init <b>(</b><i>int</i> index<b>, </b><i>int</i> length<b>)</b>    <br>
 <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;list <b>(</b>...<b>)</b>  
			Outputs consecutive elements of the list, as selected by "index" and "length". 
			Also accepts negative indices (e.g.: -1 means "last"), like Ruby, but unlike jMax. <br>
   <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="listprepend">listprepend</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <br><b>method</b>&nbsp;init <b>(</b>list...<b>)</b>   <br>
 <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;list <b>(</b>...<b>)</b>  
			Outputs the stored list followed by the incoming list, all in one message. <br>
  <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="listappend">listappend</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <br><b>method</b>&nbsp;init <b>(</b>list...<b>)</b>   <br>
 <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;list <b>(</b>...<b>)</b>  
			Outputs the incoming list followed by the stored list, all in one message. <br>
  <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="listreverse">listreverse</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;list <b>(</b>...<b>)</b>  
			Outputs the incoming list, from last element to first element. <br>
 <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="oneshot">oneshot</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 
		Like [spigot], but turns itself off after each message, so you have to turn it on 
		again to making it pass another message. <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="inv+">inv+</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <br><b>method</b>&nbsp;init <b>(</b><i>float</i> b<b>)</b>   <br>
 <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;float <b>(</b><i>float</i> a<b>)</b>  
			outputs b-a <br>
  <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="inv*">inv*</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <br><b>method</b>&nbsp;init <b>(</b><i>float</i> b<b>)</b>   <br>
 <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;float <b>(</b><i>float</i> a<b>)</b>  
			outputs b/a <br>
  <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="messageprepend">messageprepend</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 
		(This is not in jMax, but is there to help port $* messageboxes) <br><b>method</b>&nbsp;init <b>(</b>list...<b>)</b> <br>
 <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;&lt;any&gt; <b>(</b>...<b>)</b>  
			Like [listprepend], but operates on whole messages, that is, including the selector. <br>
  <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="messageappend">messageappend</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 
		(This is not in jMax, but is there to help port $* messageboxes) <br><b>method</b>&nbsp;init <b>(</b>list...<b>)</b> <br>
 <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;&lt;any&gt; <b>(</b>...<b>)</b>  
			Like [listappend], but operates on whole messages, that is, including the selector. <br>
   <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="shunt">shunt</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 
		Compatible with jMax's [demux]. <br><b>method</b>&nbsp;init <b>(</b>n<b>, </b>i<b>)</b>    <br>
 <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;&lt;any&gt; <b>(</b>...<b>)</b>  
			Routes a message to the active outlet. <br>
 <br><b>inlet&nbsp;1 </b><b>method</b>&nbsp;int <b>(</b><i>int</i> i<b>)</b>  
			Selects which outlet is active. <br>
 <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="demux">demux</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 
		please use shunt instead (name conflict with another Pd external) <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td colspan="4" bgcolor="#ffb080"><b>&nbsp;&nbsp;class </b><a name="range">range</a></td></tr><tr><td></td><td valign="top"><br>
<br clear="left"><br><br><br clear="left"><br></td><td><br>
 <br><b>method</b>&nbsp;init <b>(</b>separators...<b>)</b>   <br>
 <br><b>inlet&nbsp;0 </b><b>method</b>&nbsp;float <b>(</b><b>)</b>  
			a value to be sent to one of the outlets. The first outlet is for values 
			smaller than the first argument; else the second outlet is for values smaller 
			than the second argument; and so on; and the last outlet is for values greater 
			or equal to the last argument. <br>
 <br><b>inlet&nbsp;1..n </b><b>method</b>&nbsp;float <b>(</b><b>)</b>  
			sets the corresponding separator in the separator list. <br>
 <br></td></tr><tr><td></td><td></td><td> </td></tr>
<tr><td>&nbsp;</td></tr>
 <td colspan="4" bgcolor="black">
<img src="images/black.png" width="1" height="2"></td></tr>
<tr><td colspan="4"> 
<p><font size="-1">
GridFlow 0.9.3 Documentation<br>
Copyright &copy; 2001-2006 by Mathieu Bouchard
<a href="mailto:matju@artengine.ca">matju@artengine.ca</a>
</font></p>
</td></tr></table></body></html>