aboutsummaryrefslogtreecommitdiff
path: root/externals/gridflow/optional/opencv.c
blob: 1c3871984aecc1a3974df2ef0ebe5d1adfb3a41f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
/*
	$Id: opencv.c 4212 2009-10-15 20:37:37Z matju $

	GridFlow
	Copyright (c) 2001-2008 by Mathieu Bouchard

	This program is free software; you can redistribute it and/or
	modify it under the terms of the GNU General Public License
	as published by the Free Software Foundation; either version 2
	of the License, or (at your option) any later version.

	See file ../COPYING for further informations on licensing terms.

	This program is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty of
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
	GNU General Public License for more details.

	You should have received a copy of the GNU General Public License
	along with this program; if not, write to the Free Software
	Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/

#include "../gridflow.h.fcs"
#include <opencv/cv.h>
#include <errno.h>

#define cvRelease(euh) cvRelease((void **)(euh))
#define binbuf_addv(SELF,FMT,ARGS...) binbuf_addv(SELF,const_cast<char *>(FMT),ARGS)
#define USELIST \
	if (a.a_type != A_LIST) RAISE("expected listatom"); \
	t_list *b = (t_list *)a.a_gpointer; \
	int argc = binbuf_getnatom(b); \
	t_atom2 *argv = (t_atom2 *)binbuf_getvec(b);
#define GETF(I)     atom_getfloatarg(I,argc,argv)
#define GETI(I) int(atom_getfloatarg(I,argc,argv))

int ipl_eltype(NumberTypeE e) {
  switch (e) {
    case uint8_e: return IPL_DEPTH_8U;
    // IPL_DEPTH_8S not supported
    // IPL_DEPTH_16U not supported
    case int16_e: return IPL_DEPTH_16S;
    case int32_e: return IPL_DEPTH_32S;
    case float32_e: return IPL_DEPTH_32F;
    case float64_e: return IPL_DEPTH_64F;
    default: RAISE("unsupported type %s",number_type_table[e].name);
  }
}

NumberTypeE gf_ipltype(int e) {
  switch (e) {
    case IPL_DEPTH_8U: return uint8_e;
    // IPL_DEPTH_8S not supported
    // IPL_DEPTH_16U not supported
    case IPL_DEPTH_16S: return int16_e;
    case IPL_DEPTH_32S: return int32_e;
    case IPL_DEPTH_32F: return float32_e;
    case IPL_DEPTH_64F: return float64_e;
    default: RAISE("unsupported IPL type %d",e);
  }
}

int cv_eltype(NumberTypeE e) {
  switch (e) {
    case uint8_e: return CV_8U;
    // CV_8S not supported
    // CV_16U not supported
    case int16_e: return CV_16S;
    case int32_e: return CV_32S;
    case float32_e: return CV_32F;
    case float64_e: return CV_64F;
    default: RAISE("unsupported type %s",number_type_table[e].name);
  }
}

NumberTypeE gf_cveltype(int e) {
  switch (e) {
    case CV_8U: return uint8_e;
    // CV_8S not supported
    // CV_16U not supported
    case CV_16S: return int16_e;
    case CV_32S: return int32_e;
    case CV_32F: return float32_e;
    case CV_64F: return float64_e;
    default: RAISE("unsupported CV type %d",e);
  }
}

enum CvMode {
	cv_mode_auto,
	cv_mode_channels,
	cv_mode_nochannels,
};

CvMode convert (const t_atom2 &x, CvMode *foo) {
	if (x==gensym("auto"))       return cv_mode_auto;
	if (x==gensym("channels"))   return cv_mode_channels;
	if (x==gensym("nochannels")) return cv_mode_nochannels;
	RAISE("invalid CvMode");
}

CvTermCriteria convert (const t_atom2 &a, CvTermCriteria *foo) {
	USELIST;
	CvTermCriteria tc;
	tc.type = 0;
	if (argc>0 && argv[0]!=gensym("nil")) {tc.type |= CV_TERMCRIT_ITER; tc.max_iter = GETI(0);}
	if (argc>1 && argv[1]!=gensym("nil")) {tc.type |= CV_TERMCRIT_EPS ; tc.epsilon  = GETF(1);}
	if (argc>2) RAISE("invalid CvTermCriteria (too many args)");
	//post("type=0x%08x max_iter=%d epsilon=%f",tc.type,tc.max_iter,tc.epsilon);
	return tc;
}

void set_atom (t_atom *a, CvTermCriteria &tc) {
	t_binbuf *b = binbuf_new();
	if (tc.type & CV_TERMCRIT_ITER) binbuf_addv(b,"f",tc.max_iter); else binbuf_addv(b,"s",gensym("nil"));
	if (tc.type & CV_TERMCRIT_EPS ) binbuf_addv(b,"f",tc.epsilon ); else binbuf_addv(b,"s",gensym("nil"));
	SETLIST(a,b);
}

CvArr *cvGrid(PtrGrid g, CvMode mode, int reqdims=-1) {
	P<Dim> d = g->dim;
	int channels=1;
	int dims=g->dim->n;
	//post("mode=%d",(int)mode);
	if (mode==cv_mode_channels && g->dim->n==0) RAISE("CV: channels dimension required for 'mode channels'");
	if ((mode==cv_mode_auto && g->dim->n>=3) || mode==cv_mode_channels) channels=g->dim->v[--dims];
	if (channels>64) RAISE("CV: too many channels. max 64, got %d",channels);
	//post("channels=%d dims=%d nt=%d",channels,dims,g->nt);
	//post("bits=%d",number_type_table[g->nt].size);
	//if (dims==2) return cvMat(g->dim->v[0],g->dim->v[1],cv_eltype(g->nt),g->data);
	if (reqdims>=0 && reqdims!=dims) RAISE("CV: wrong number of dimensions. expected %d, got %d", reqdims, dims);
	if (dims==2) {
		CvMat *a = cvCreateMatHeader(g->dim->v[0],g->dim->v[1],CV_MAKETYPE(cv_eltype(g->nt),channels));
		cvSetData(a,g->data,g->dim->prod(1)*(number_type_table[g->nt].size/8));
		return a;
	}
	if (dims==1) {
		CvMat *a = cvCreateMatHeader(g->dim->v[0],           1,CV_MAKETYPE(cv_eltype(g->nt),channels));
		cvSetData(a,g->data,g->dim->prod(1)*(number_type_table[g->nt].size/8));
		return a;
	}
	RAISE("unsupported number of dimensions (got %d)",g->dim->n);
	//return 0;
}

IplImage *cvImageGrid(PtrGrid g /*, CvMode mode */) {
	P<Dim> d = g->dim;
	if (d->n!=3) RAISE("expected 3 dimensions, got %s",d->to_s());
	int channels=g->dim->v[2];
	if (channels>64) RAISE("too many channels. max 64, got %d",channels);
	CvSize size = {d->v[1],d->v[0]};
	IplImage *a = cvCreateImageHeader(size,ipl_eltype(g->nt),channels);
	cvSetData(a,g->data,g->dim->prod(1)*(number_type_table[g->nt].size/8));
	return a;
}

void cvMatSend(const CvMat *self, FObject *obj, int outno, Dim *dim=0) {
	int m = self->rows;
	int n = self->cols;
	int e = CV_MAT_TYPE(cvGetElemType(self));
	int c = CV_MAT_CN(  cvGetElemType(self));
	GridOutlet *out = new GridOutlet(obj,0,dim?dim:new Dim(m,n));
	for (int i=0; i<m; i++) {
		uchar *meuh = cvPtr2D(self,i,0,0);
		switch (e) {
		  case CV_8U:  out->send(c*n,  (uint8 *)meuh); break;
		  case CV_16S: out->send(c*n,  (int16 *)meuh); break;
		  case CV_32S: out->send(c*n,  (int32 *)meuh); break;
		  case CV_32F: out->send(c*n,(float32 *)meuh); break;
		  case CV_64F: out->send(c*n,(float64 *)meuh); break;
		}
	}
}

void set_atom (t_atom *a, CvPoint &v) {
	t_binbuf *b = binbuf_new();
	binbuf_addv(b,"ii",v.y,v.x);
	SETLIST(a,b);
}
void set_atom (t_atom *a, CvSize &v) {
	t_binbuf *b = binbuf_new();
	binbuf_addv(b,"ii",v.height,v.width);
	SETLIST(a,b);
}
void set_atom (t_atom *a, CvScalar &scal) {
	t_binbuf *b = binbuf_new();
	binbuf_addv(b,"ffff",scal.val[0],scal.val[1],scal.val[2],scal.val[3]);
	SETLIST(a,b);
}
CvPoint  convert (const t_atom &a, CvPoint *)   {USELIST; return cvPoint( GETI(0),GETI(1));}
CvSize   convert (const t_atom &a, CvSize *)    {USELIST; return cvSize(  GETI(0),GETI(1));}
CvScalar convert (const t_atom &a, CvScalar *)  {USELIST; return cvScalar(GETF(0),GETF(1),GETF(2),GETF(3));}

/* ******************************** CLASSES ******************************** */

\class CvOp1 : FObject {
	\attr CvMode mode;
	\constructor (...) {mode = cv_mode_auto;}
	/* has no default \grin 0 handler so far. */
};
\end class {}

\class CvOp2 : CvOp1 {
	PtrGrid r;
	\constructor (Grid *r=0) {this->r = r?r:new Grid(new Dim(),int32_e,true);}
	virtual void func(CvArr *l, CvArr *r, CvArr *o) {/* rien */}
	\grin 0
	\grin 1
};
GRID_INLET(0) {
	SAME_TYPE(in,r);
	if (!in->dim->equal(r->dim)) RAISE("dimension mismatch: left:%s right:%s",in->dim->to_s(),r->dim->to_s());
	in->set_chunk(0);
} GRID_FLOW {
	PtrGrid l = new Grid(in->dim,(T *)data);
	PtrGrid o = new Grid(in->dim,in->nt);
	CvArr *a = cvGrid(l,mode);
	CvArr *b = cvGrid(r,mode);
	CvArr *c = cvGrid(o,mode);
	func(a,b,c);
	cvRelease(&a);
	cvRelease(&b);
	cvRelease(&c);
	out = new GridOutlet(this,0,in->dim,in->nt);
	out->send(o->dim->prod(),(T *)o->data);
} GRID_END
GRID_INPUT2(1,r) {} GRID_END
\end class {}

#define FUNC(CLASS) CLASS(BFObject *bself, MESSAGE):CvOp2(bself,MESSAGE2) {} virtual void func(CvArr *l, CvArr *r, CvArr *o)

\class CvAdd : CvOp2 {FUNC(CvAdd) {cvAdd(l,r,o,0);}};
\end class {install("cv/#Add",2,1);}
\class CvSub : CvOp2 {FUNC(CvSub) {cvSub(l,r,o,0);}};
\end class {install("cv/#Sub",2,1);}
\class CvMul : CvOp2 {FUNC(CvMul) {cvMul(l,r,o,1);}};
\end class {install("cv/#Mul",2,1);}
\class CvDiv : CvOp2 {FUNC(CvDiv) {cvDiv(l,r,o,1);}};
\end class {install("cv/#Div",2,1);}
\class CvAnd : CvOp2 {FUNC(CvAnd) {cvAnd(l,r,o,0);}};
\end class {install("cv/#And",2,1);}
\class CvOr  : CvOp2 {FUNC(CvOr ) {cvOr( l,r,o,0);}};
\end class {install("cv/#Or" ,2,1);}
\class CvXor : CvOp2 {FUNC(CvXor) {cvXor(l,r,o,0);}};
\end class {install("cv/#Xor",2,1);}

\class CvInvert : CvOp1 {
	\constructor () {}
	\grin 0
};
GRID_INLET(0) {
	if (in->dim->n!=2) RAISE("should have 2 dimensions");
	if (in->dim->v[0] != in->dim->v[1]) RAISE("matrix should be square");
	in->set_chunk(0);
} GRID_FLOW {
	//post("l=%p, r=%p", &*l, &*r);
	PtrGrid l = new Grid(in->dim,(T *)data);
	PtrGrid o = new Grid(in->dim,in->nt);
	CvArr *a = cvGrid(l,mode);
	CvArr *c = cvGrid(o,mode);
	//post("a=%p, b=%p", a, b);
	cvInvert(a,c);
	cvRelease(&a);
	cvRelease(&c);
	out = new GridOutlet(this,0,in->dim,in->nt);
	out->send(o->dim->prod(),(T *)o->data);
} GRID_END
\end class {install("cv/#Invert",1,1);}

\class CvSVD : CvOp1 {
	\grin 0
	\constructor () {}
};
GRID_INLET(0) {
	if (in->dim->n!=2) RAISE("should have 2 dimensions");
	if (in->dim->v[0] != in->dim->v[1]) RAISE("matrix should be square");
	in->set_chunk(0);
} GRID_FLOW {
	PtrGrid l = new Grid(in->dim,(T *)data);
	PtrGrid o0 = new Grid(in->dim,in->nt);
	PtrGrid o1 = new Grid(in->dim,in->nt);
	PtrGrid o2 = new Grid(in->dim,in->nt);
	CvArr *a = cvGrid(l,mode);
	CvArr *c0 = cvGrid(o0,mode);
	CvArr *c1 = cvGrid(o1,mode);
	CvArr *c2 = cvGrid(o2,mode);
	cvSVD(a,c0,c1,c2);
	cvRelease(&a);
	cvRelease(&c0);
	cvRelease(&c1);
	cvRelease(&c2);
	out = new GridOutlet(this,2,in->dim,in->nt); out->send(o2->dim->prod(),(T *)o2->data);
	out = new GridOutlet(this,1,in->dim,in->nt); out->send(o1->dim->prod(),(T *)o1->data);
	out = new GridOutlet(this,0,in->dim,in->nt); out->send(o0->dim->prod(),(T *)o0->data);
} GRID_END
\end class {install("cv/#SVD",1,3);}

\class CvEllipse : FObject {
	\grin 0
	\attr CvPoint center;
	\attr CvSize axes;
	\attr double angle;
	\attr double start_angle;
	\attr double end_angle;
	\attr CvScalar color;
	\attr int thickness;
	\attr int line_type;
	\attr int shift;
	\constructor () {
		center=cvPoint(0,0); axes=cvSize(0,0); angle=0; start_angle=0; end_angle=360; color=cvScalar(0);
		thickness=1; line_type=8; shift=0;
	}
};
GRID_INLET(0) {
	in->set_chunk(0);
} GRID_FLOW {
	PtrGrid l = new Grid(in->dim,in->nt); COPY((T *)*l,data,in->dim->prod());
	IplImage *img = cvImageGrid(l);
	cvEllipse(img,center,axes,angle,start_angle,end_angle,color,thickness,line_type,shift);
	cvReleaseImageHeader(&img);
	out = new GridOutlet(this,0,in->dim,in->nt); out->send(in->dim->prod(),(T *)*l);
} GRID_END
\end class {install("cv/#Ellipse",1,2);}

\class CvApproxPoly : CvOp1 {
	\grin 0
	\attr int accuracy;
	\attr bool closed;
	CvMemStorage* storage;
	\constructor () {closed=true; storage = cvCreateMemStorage(0);}
	~CvApproxPoly () {cvReleaseMemStorage(&storage);}
};
GRID_INLET(0) {
	in->set_chunk(0);
} GRID_FLOW {
	PtrGrid l = new Grid(in->dim,(T *)data); CvArr *a = cvGrid(l,mode);
	CvSeq *seq = cvApproxPoly(a,sizeof(CvMat),storage,CV_POLY_APPROX_DP,accuracy,closed);
	seq=seq; //blah
} GRID_END
\end class {install("cv/#ApproxPoly",1,1);}

\class CvCalcOpticalFlowHS : CvOp1 {
	\grin 0
	\attr double lambda;
	//\attr CvTermCriteria criteria;
	\constructor () {}
};
GRID_INLET(0) {
	in->set_chunk(0);
} GRID_FLOW {
//	cvCalcOpticalFlowHS(prev,curr,use_previous, CvArr* velx, CvArr* vely, lambda, CvTermCriteria criteria );
} GRID_END
\end class {install("cv/#CalcOpticalFlowHS",1,1);}
\class CvCalcOpticalFlowLK : CvOp1 {
	\grin 0
	\constructor () {}
};
GRID_INLET(0) {
	in->set_chunk(0);
} GRID_FLOW {
} GRID_END
\end class {install("cv/#CalcOpticalFlowLK",1,1);}
\class CvCalcOpticalFlowBM : CvOp1 {
	\grin 0
	\constructor () {}
};
GRID_INLET(0) {
	in->set_chunk(0);
} GRID_FLOW {
} GRID_END
\end class {install("cv/#CalcOpticalFlowBM",1,1);}
\class CvCalcOpticalFlowPyrLK : CvOp1 {
	\grin 0
	\constructor () {}
};
GRID_INLET(0) {
	in->set_chunk(0);
} GRID_FLOW {
} GRID_END
\end class {install("cv/#CalcOpticalFlowPyrLK",1,1);}

/*
void cvCalcOpticalFlowLK(const CvArr* prev, const CvArr* curr, CvSize win_size, CvArr* velx, CvArr* vely);
void cvCalcOpticalFlowBM(const CvArr* prev, const CvArr* curr, CvSize block_size, CvSize shift_size, CvSize max_range, int use_previous,
                         CvArr* velx, CvArr* vely);
void cvCalcOpticalFlowPyrLK(const CvArr* prev, const CvArr* curr, CvArr* prev_pyr, CvArr* curr_pyr,
                            const CvPoint2D32f* prev_features, CvPoint2D32f* curr_features,
                            int count, CvSize win_size, int level, char* status,
                            float* track_error, CvTermCriteria criteria, int flags );
void cvCalcBackProject( IplImage** image, CvArr* back_project, const CvHistogram* hist );
void cvCalcHist( IplImage** image, CvHistogram* hist, int accumulate=0, const CvArr* mask=NULL );
CvHistogram* cvCreateHist( int dims, int* sizes, int type, float** ranges=NULL, int uniform=1 );
void cvSnakeImage( const IplImage* image, CvPoint* points, int length, float* alpha, float* beta, float* gamma, int coeff_usage,
                   CvSize win, CvTermCriteria criteria, int calc_gradient=1 );
int cvMeanShift( const CvArr* prob_image, CvRect window, CvTermCriteria criteria, CvConnectedComp* comp );
int  cvCamShift( const CvArr* prob_image, CvRect window, CvTermCriteria criteria, CvConnectedComp* comp, CvBox2D* box=NULL );
*/

/* ******************************** UNFINISHED ******************************** */

\class CvSplit : CvOp1 {
	int channels;
	\constructor (int channels) {
		if (channels<0 || channels>64) RAISE("channels=%d is not in 1..64",channels);
		this->channels = channels;
		bself->noutlets_set(channels);
	}
};
\end class {}

\class CvHaarDetectObjects : FObject {
	\attr double scale_factor; /*=1.1*/
	\attr int min_neighbors;   /*=3*/
	\attr int flags;           /*=0*/
	\constructor () {
		scale_factor=1.1;
		min_neighbors=3;
		flags=0;
		//cascade = cvLoadHaarClassifierCascade("<default_face_cascade>",cvSize(24,24));
		const char *filename = OPENCV_SHARE_PATH "/haarcascades/haarcascade_frontalface_alt2.xml";
		FILE *f = fopen(filename,"r");
		if (!f) RAISE("error opening %s: %s",filename,strerror(errno));
		fclose(f);
		cascade = (CvHaarClassifierCascade *)cvLoad(filename,0,0,0);
		int s = cvGetErrStatus();
		post("cascade=%p, cvGetErrStatus=%d cvErrorStr=%s",cascade,s,cvErrorStr(s));
		//cascade = cvLoadHaarClassifierCascade(OPENCV_SHARE_PATH "/data/haarcascades/haarcascade_frontalface_alt2.xml",cvSize(24,24));
		storage = cvCreateMemStorage(0);
	}
	CvHaarClassifierCascade *cascade;
	CvMemStorage *storage;
	\grin 0
};
GRID_INLET(0) {
	in->set_chunk(0);
} GRID_FLOW {
	PtrGrid l = new Grid(in->dim,(T *)data);
	IplImage *img = cvImageGrid(l);
	CvSeq *ret = cvHaarDetectObjects(img,cascade,storage,scale_factor,min_neighbors,flags);
	int n = ret ? ret->total : 0;
	out = new GridOutlet(this,0,new Dim(n,2,2));
	for (int i=0; i<n; i++) {
		CvRect *r = (CvRect *)cvGetSeqElem(ret,i);
		int32 duh[] = {r->y,r->x,r->y+r->height,r->x+r->width};
		out->send(4,duh);
	}
} GRID_END
\end class {install("cv/#HaarDetectObjects",2,1);}

\class CvKalmanWrapper : CvOp1 {
	CvKalman *kal;
	\constructor (int dynam_params, int measure_params, int control_params=0) {
		kal = cvCreateKalman(dynam_params,measure_params,control_params);
	}
	~CvKalmanWrapper () {if (kal) cvReleaseKalman(&kal);}
	\decl void _0_bang ();
	\grin 0
	\grin 1
};
\def void _0_bang () {
	const CvMat *r = cvKalmanPredict(kal,0);
	cvMatSend(r,this,0);
}
GRID_INLET(0) {
	in->set_chunk(0);
} GRID_FLOW {
	PtrGrid l = new Grid(in->dim,(T *)data);
	CvMat *a = (CvMat *)cvGrid(l,mode,2);
	const CvMat *r = cvKalmanPredict(kal,a);
	cvMatSend(r,this,0);
} GRID_END

GRID_INLET(1) {
	in->set_chunk(0);
} GRID_FLOW {
	PtrGrid l = new Grid(in->dim,(T *)data);
	CvMat *a = (CvMat *)cvGrid(l,mode,2);
	const CvMat* r = cvKalmanCorrect(kal,a);
	cvMatSend(r,this,0);
	cvRelease(&r);
} GRID_END
\end class {install("cv/#Kalman",2,1);}

/* **************************************************************** */

\class CvKMeans : CvOp1 {
	\attr int numClusters;
	\attr CvTermCriteria termcrit;
	\grin 0 float32
	\decl 1 float (int v);
	\constructor (int v) {
		_1_float(0,0,v);
		termcrit = CvTermCriteria();
	}
};

\def 1 float (int v) {numClusters = v;}

//post("typeof(a)=%p typeof(c)=%p typeof(CvMat)=%p",cvTypeOf(a),cvTypeOf(c),cvFindType("opencv-matrix"));
//for (CvTypeInfo *t = cvFirstType(); t; t=t->next) post("type %s",t->type_name);

GRID_INLET(0) {
	if (in->dim->n<1) RAISE("should have at least 1 dimension");
	in->set_chunk(0);
} GRID_FLOW {
	int32 v[] = {in->dim->prod(0)/in->dim->prod(-1),in->dim->prod(-1)};
	PtrGrid l = new Grid(new Dim(2,v),(T *)data);
	CvArr *a = (CvMat *)cvGrid(l,mode,2);
	PtrGrid o = new Grid(new Dim(1,v),int32_e);
	CvArr *c = (CvMat *)cvGrid(o,mode);
	cvKMeans2(a,numClusters,c,termcrit);
	int w[in->dim->n];
	COPY(w,in->dim->v,in->dim->n);
	w[in->dim->n-1] = 1;
	P<Dim> d = new Dim(in->dim->n,w);
	out = new GridOutlet(this,0,d);
	out->send(v[0],(int32 *)*o);
	cvRelease(&a);
	cvRelease(&c);
} GRID_END

\end class {install("cv/#KMeans",2,1);}



\class CvCornerHarris < CvOp1 {
	\attr int block_size;
	\attr int aperture_size;
	\attr double k;
	\constructor () {
		block_size = 3;
		aperture_size = 3;
		k = 0.04;
	}
	\grin 0
};

GRID_INLET(0) {
	in->set_chunk(0);
} GRID_FLOW {
	PtrGrid l = new Grid(in->dim,(T *)data);
	CvArr *a = (CvMat *)cvGrid(l,mode,2);
	PtrGrid o = new Grid(in->dim,float32_e);
	CvArr *c = (CvMat *)cvGrid(o,mode);
	cvCornerHarris(a,c,block_size,aperture_size,k);
	cvRelease(&a);
	cvRelease(&c);
	out = new GridOutlet(this,0,in->dim,in->nt); out->send(o->dim->prod(),(T *)o->data);
} GRID_END

\end class {install("cv/#CornerHarris",1,1);}

/* **************************************************************** */

static int erreur_handleur (int status, const char* func_name, const char* err_msg, const char* file_name, int line, void *userdata) {
	cvSetErrStatus(CV_StsOk);
	// we might be looking for trouble because we don't know whether OpenCV is throw-proof.
	RAISE("OpenCV error: status='%s' func_name=%s err_msg=\"%s\" file_name=%s line=%d",cvErrorStr(status),func_name,err_msg,file_name,line);
	// if this breaks OpenCV, then we will have to use post() or a custom hybrid of post() and RAISE() that does not cause a
	// longjmp when any OpenCV functions are on the stack.
	return 0;
}

void startup_opencv() {
	/* CvErrorCallback z = */ cvRedirectError(erreur_handleur);
	\startall
}