1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
|
/*
$Id: number.c 4452 2009-10-27 15:59:57Z matju $
GridFlow
Copyright (c) 2001-2009 by Mathieu Bouchard
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
See file ../COPYING for further informations on licensing terms.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include "gridflow.hxx.fcs"
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include <limits.h>
#include <complex>
#include <assert.h>
//using namespace std;
static inline uint64 weight(uint64 x) {uint64 k;
k=0x5555555555555555ULL; x = (x&k) + ((x>> 1)&k); //(2**64-1)/(2**2**0-1)
k=0x3333333333333333ULL; x = (x&k) + ((x>> 2)&k); //(2**64-1)/(2**2**1-1)
k=0x0f0f0f0f0f0f0f0fULL; x = (x&k) + ((x>> 4)&k); //(2**64-1)/(2**2**2-1)
k=0x00ff00ff00ff00ffULL; x = (x&k) + ((x>> 8)&k); //(2**64-1)/(2**2**3-1)
k=0x0000ffff0000ffffULL; x = (x&k) + ((x>>16)&k); //(2**64-1)/(2**2**4-1)
k=0x00000000ffffffffULL; x = (x&k) + ((x>>32)&k); //(2**64-1)/(2**2**5-1)
return x;
}
#ifdef PASS1
NumberType number_type_table[] = {
#define FOO(_sym_,_size_,_flags_,args...) NumberType( #_sym_, _size_, _flags_, args ),
NUMBER_TYPES(FOO)
#undef FOO
};
const long number_type_table_n = COUNT(number_type_table);
#endif
// those are bogus class-templates in the sense that you don't create
// objects from those, you just call static functions. The same kind
// of pattern is present in STL to overcome some limitations of C++.
template <class T> class Op {
public:
// I call abort() on those because I can't say they're purevirtual.
static T f(T a, T b) {abort();}
static bool is_neutral (T x, LeftRight side) {assert(!"Op::is_neutral called?"); return false;}
static bool is_absorbent(T x, LeftRight side) {assert(!"Op::is_absorbent called?"); return false;}
};
template <class O, class T> class OpLoops: public NumopOn<T> {
public:
static inline T f(T a, T b) {return O::f(a,b);}
#define FOO(I) as[I]=f(as[I],b);
static void _map (long n, T *as, T b) {if (!n) return; UNROLL_8(FOO,n,as)}
#undef FOO
#define FOO(I) as[I]=f(as[I],as[ba+I]);
static void _zip (long n, T *as, T *bs) {if (!n) return; ptrdiff_t ba=bs-as; UNROLL_8(FOO,n,as)}
#undef FOO
#define W(i) as[i]=f(as[i],bs[i]);
#define Z(i,j) as[i]=f(f(f(f(as[i],bs[i]),bs[i+j]),bs[i+j+j]),bs[i+j+j+j]);
static void _fold (long an, long n, T *as, T *bs) {
switch (an) {
case 1:for(;(n&3)!=0;bs+=1,n--){W(0) } for (;n;bs+= 4,n-=4){Z(0,1) } break;
case 2:for(;(n&3)!=0;bs+=2,n--){W(0)W(1) } for (;n;bs+= 8,n-=4){Z(0,2)Z(1,2) } break;
case 3:for(;(n&3)!=0;bs+=3,n--){W(0)W(1)W(2) } for (;n;bs+=12,n-=4){Z(0,3)Z(1,3)Z(2,3) } break;
case 4:for(;(n&3)!=0;bs+=4,n--){W(0)W(1)W(2)W(3)} for (;n;bs+=16,n-=4){Z(0,4)Z(1,4)Z(2,4)Z(3,4)} break;
default:while (n--) {int i=0;
for (; i<(an&-4); i+=4, bs+=4) {
as[i+0]=f(as[i+0],bs[0]);
as[i+1]=f(as[i+1],bs[1]);
as[i+2]=f(as[i+2],bs[2]);
as[i+3]=f(as[i+3],bs[3]);}
for (; i<an; i++, bs++) as[i] = f(as[i],*bs);}}}
#undef W
#undef Z
static void _scan (long an, long n, T *as, T *bs) {
for (; n--; as=bs-an) {
for (int i=0; i<an; i++, as++, bs++) *bs=f(*as,*bs);
}
}
};
template <class T>
static void quick_mod_map (long n, T *as, T b) {
if (!b) return;
#define FOO(I) as[I]=mod(as[I],b);
UNROLL_8(FOO,n,as)
#undef FOO
}
template <class T> static void quick_ign_map (long n, T *as, T b) {}
template <class T> static void quick_ign_zip (long n, T *as, T *bs) {}
template <class T> static void quick_put_map (long n, T *as, T b) {
#define FOO(I) as[I]=b;
UNROLL_8(FOO,n,as)
#undef FOO
}
#ifdef PASS1
void quick_put_map (long n, int16 *as, int16 b) {
if ((n&1)!=0 && ((long)as&4)!=0) {*as++=b; n--;}
quick_put_map(n>>1, (int32 *)as, (int32)(b<<16)+b);
if ((n&1)!=0) *as++=b;
}
void quick_put_map (long n, uint8 *as, uint8 b) {
while ((n&3)!=0 && ((long)as&4)!=0) {*as++=b; n--;}
int32 c=(b<<8)+b; c+=c<<16;
quick_put_map(n>>2, (int32 *)as, c);
while ((n&3)!=0) *as++=b;
}
#endif
template <class T> static void quick_put_zip (long n, T *as, T *bs) {
gfmemcopy((uint8 *)as, (uint8 *)bs, n*sizeof(T));
}
#define Plex std::complex
// classic two-input operator
#define DEF_OP_COMMON(op,expr,neu,isneu,isorb,T) \
inline static T f(T a, T b) { return (T)(expr); } \
inline static void neutral (T *a, LeftRight side) {*a = neu;} \
inline static bool is_neutral (T x, LeftRight side) {return isneu;} \
inline static bool is_absorbent(T x, LeftRight side) {return isorb;}
#define DEF_OP(op,expr,neu,isneu,isorb) template <class T> class Y##op : Op<T> { public: \
DEF_OP_COMMON(op,expr,neu,isneu,isorb,T);};
#define DEF_OPFT(op,expr,neu,isneu,isorb,T) template <> class Y##op<T> : Op<T> { public: \
DEF_OP_COMMON(op,expr,neu,isneu,isorb,T);};
// this macro is for operators that have different code for the float version
#define DEF_OPF( op,expr,expr2,neu,isneu,isorb) \
DEF_OP( op,expr, neu,isneu,isorb) \
DEF_OPFT(op, expr2,neu,isneu,isorb,float32) \
DEF_OPFT(op, expr2,neu,isneu,isorb,float64)
#define OL(O,T) OpLoops<Y##O<T>,T>
#define VOL(O,T) OpLoops<Y##O<Plex<T> >,Plex<T> >
#define DECL_OPON(L,O,T) NumopOn<T>( \
(NumopOn<T>::Map) L(O,T)::_map, (NumopOn<T>::Zip) L(O,T)::_zip, \
(NumopOn<T>::Fold)L(O,T)::_fold, (NumopOn<T>::Scan)L(O,T)::_scan, \
&Y##O<T>::neutral, &Y##O<T>::is_neutral, &Y##O<T>::is_absorbent)
#define DECL_OPON_NOFOLD(L,O,T) NumopOn<T>( \
(NumopOn<T>::Map)L(O,T)::_map, (NumopOn<T>::Zip)L(O,T)::_zip, 0,0, \
&Y##O<T>::neutral, &Y##O<T>::is_neutral, &Y##O<T>::is_absorbent)
#define DECLOP( L,M,O,sym,flags,dim) Numop(sym,M(L,O,uint8),M(L,O,int16),M(L,O,int32) \
NONLITE(,M(L,O,int64)), M(L,O,float32) NONLITE(,M(L,O,float64)),flags,dim)
#define DECLOP_NOFLOAT(L,M,O,sym,flags,dim) Numop(sym,M(L,O,uint8),M(L,O,int16),M(L,O,int32) \
NONLITE(,M(L,O,int64)),NumopOn<float32>() NONLITE(,NumopOn<float64>()), flags,dim)
// NONLITE(,M(L,O,int64),NumopOn<float32>(),NumopOn<float64>()), flags,dim)
#define DECLOP_FLOAT( L,M,O,sym,flags,dim) Numop(sym,NumopOn<uint8>(),NumopOn<int16>(),NumopOn<int32>() \
NONLITE(,NumopOn<int64>()),M(L,O,float32) NONLITE(,M(L,O,float64)),flags,dim)
#define DECL_OP( O,sym,flags) DECLOP( OL,DECL_OPON ,O,sym,flags,1)
#define DECL_OP_NOFLOAT( O,sym,flags) DECLOP_NOFLOAT( OL,DECL_OPON ,O,sym,flags,1)
#define DECL_OP_NOFOLD( O,sym,flags) DECLOP( OL,DECL_OPON_NOFOLD,O,sym,flags,1)
#define DECL_OP_NOFOLD_NOFLOAT( O,sym,flags) DECLOP_NOFLOAT( OL,DECL_OPON_NOFOLD,O,sym,flags,1)
#define DECL_OP_NOFOLD_FLOAT( O,sym,flags) DECLOP_FLOAT( OL,DECL_OPON_NOFOLD,O,sym,flags,1)
#define DECL_VOP( O,sym,flags,dim) DECLOP( VOL,DECL_OPON ,O,sym,flags,dim)
#define DECL_VOP_NOFLOAT( O,sym,flags,dim) DECLOP_NOFLOAT(VOL,DECL_OPON ,O,sym,flags,dim)
#define DECL_VOP_NOFOLD( O,sym,flags,dim) DECLOP( VOL,DECL_OPON_NOFOLD,O,sym,flags,dim)
#define DECL_VOP_NOFOLD_NOFLOAT(O,sym,flags,dim) DECLOP_NOFLOAT(VOL,DECL_OPON_NOFOLD,O,sym,flags,dim)
#define DECL_VOP_NOFOLD_FLOAT( O,sym,flags,dim) DECLOP_FLOAT( VOL,DECL_OPON_NOFOLD,O,sym,flags,dim)
template <class T> static inline T gf_floor (T a) {
return (T) floor((double)a); }
template <class T> static inline T gf_trunc (T a) {
return (T) floor(abs((double)a)) * (a<0?-1:1); }
#ifdef PASS1
DEF_OP(ignore, a, 0, side==at_right, side==at_left)
DEF_OP(put, b, 0, side==at_left, side==at_right)
DEF_OP(add, a+b, 0, x==0, false)
DEF_OP(sub, a-b, 0, side==at_right && x==0, false)
DEF_OP(bus, b-a, 0, side==at_left && x==0, false)
DEF_OP(mul, a*b, 1, x==1, x==0)
DEF_OP(mulshr8, (a*b)>>8, 256, x==256, x==0)
DEF_OP(div, b==0 ? (T)0 : a/b , 1, side==at_right && x==1, false)
DEF_OP(div2, b==0 ? 0 : div2(a,b), 1, side==at_right && x==1, false)
DEF_OP(vid, a==0 ? (T)0 : b/a , 1, side==at_left && x==1, false)
DEF_OP(vid2, a==0 ? 0 : div2(b,a), 1, side==at_left && x==1, false)
DEF_OPF(mod, b==0 ? 0 : mod(a,b), b==0 ? 0 : a-b*gf_floor(a/b), 0, false, (side==at_left && x==0) || (side==at_right && x==1))
DEF_OPF(dom, a==0 ? 0 : mod(b,a), a==0 ? 0 : b-a*gf_floor(b/a), 0, false, (side==at_left && x==0) || (side==at_right && x==1))
//DEF_OPF(rem, b==0 ? 0 : a%b, b==0 ? 0 : a-b*gf_trunc(a/b))
//DEF_OPF(mer, a==0 ? 0 : b%a, a==0 ? 0 : b-a*gf_trunc(b/a))
DEF_OP(rem, b==0?(T)0:a%b, 0, false, (side==at_left&&x==0) || (side==at_right&&x==1))
DEF_OP(mer, a==0?(T)0:b%a, 0, false, (side==at_left&&x==0) || (side==at_right&&x==1))
#endif
#ifdef PASS2
DEF_OP(gcd, gcd(a,b), 0, x==0, x==1)
DEF_OP(gcd2, gcd2(a,b), 0, x==0, x==1) // should test those and pick one of the two
DEF_OP(lcm, a==0 || b==0 ? (T)0 : lcm(a,b), 1, x==1, x==0)
DEF_OPF(or , a|b, (float32)((int32)a | (int32)b), 0, x==0, x==nt_all_ones(&x))
DEF_OPF(xor, a^b, (float32)((int32)a ^ (int32)b), 0, x==0, false)
DEF_OPF(and, a&b, (float32)((int32)a & (int32)b), -1 /*nt_all_ones((T*)0)*/, x==nt_all_ones(&x), x==0)
DEF_OPF(shl, a<<b, a*pow(2.0,+b), 0, side==at_right && x==0, false)
DEF_OPF(shr, a>>b, a*pow(2.0,-b), 0, side==at_right && x==0, false)
DEF_OP(sc_and, a ? b : a, 1, side==at_left && x!=0, side==at_left && x==0)
DEF_OP(sc_or, a ? a : b, 0, side==at_left && x==0, side==at_left && x!=0)
DEF_OP(min, min(a,b), nt_greatest((T*)0), x==nt_greatest(&x), x==nt_smallest(&x))
DEF_OP(max, max(a,b), nt_smallest((T*)0), x==nt_smallest(&x), x==nt_greatest(&x))
DEF_OP(cmp, cmp(a,b), 0, false, false)
DEF_OP(eq, a == b, 0, false, false)
DEF_OP(ne, a != b, 0, false, false)
DEF_OP(gt, a > b, 0, false, (side==at_left && x==nt_smallest(&x)) || (side==at_right && x==nt_greatest(&x)))
DEF_OP(le, a <= b, 0, false, (side==at_left && x==nt_smallest(&x)) || (side==at_right && x==nt_greatest(&x)))
DEF_OP(lt, a < b, 0, false, (side==at_left && x==nt_greatest(&x)) || (side==at_right && x==nt_smallest(&x)))
DEF_OP(ge, a >= b, 0, false, (side==at_left && x==nt_greatest(&x)) || (side==at_right && x==nt_smallest(&x)))
#endif
#ifdef PASS3
DEF_OP(sinmul, (float64)b * sin((float64)a * (M_PI / 18000)), 0, false, false) // "LN=9000+36000n RA=0 LA=..."
DEF_OP(cosmul, (float64)b * cos((float64)a * (M_PI / 18000)), 0, false, false) // "LN=36000n RA=0 LA=..."
DEF_OP(atan, atan2(a,b) * (18000 / M_PI), 0, false, false) // "LA=0"
DEF_OP(tanhmul, (float64)b * tanh((float64)a * (M_PI / 18000)), 0, false, x==0)
DEF_OP(gamma, b<=0 ? (T)0 : (T)(0+floor(pow((float64)a/256.0,256.0/(float64)b)*256.0)), 0, false, false) // "RN=256"
DEF_OPF(pow, ipow(a,b), pow(a,b), 0, false, false) // "RN=1"
DEF_OP(logmul, a==0 ? (T)0 : (T)((float64)b * log((float64)gf_abs(a))), 0, false, false) // "RA=0"
// 0.8
DEF_OPF(clipadd, clipadd(a,b), a+b, 0, x==0, false)
DEF_OPF(clipsub, clipsub(a,b), a-b, 0, side==at_right && x==0, false)
DEF_OP(abssub, gf_abs(a-b), 0, false, false)
DEF_OP(sqsub, (a-b)*(a-b), 0, false, false)
DEF_OP(avg, (a+b)/2, 0, false, false)
DEF_OPF(hypot, floor(sqrt(a*a+b*b)), sqrt(a*a+b*b), 0, false, false)
DEF_OPF(sqrt, floor(sqrt(a)), sqrt(a), 0, false, false)
DEF_OP(rand, a==0 ? (T)0 : (T)(random()%(int32)a), 0, false, false)
//DEF_OP(erf,"erf*", 0)
DEF_OP(weight,weight((uint64)(a^b) & (0xFFFFFFFFFFFFFFFFULL>>(64-sizeof(T)*8))),0,false,false)
#define BITS(T) (sizeof(T)*8)
DEF_OP(rol,((uint64)a<<b)|((uint64)a>>(T)((-b)&(BITS(T)-1))),0,false,false)
DEF_OP(ror,((uint64)a>>b)|((uint64)a<<(T)((-b)&(BITS(T)-1))),0,false,false)
DEF_OP(sin, sin(a-b), 0, false, false)
DEF_OP(cos, cos(a-b), 0, false, false)
DEF_OP(atan2,atan2(a,b), 0, false, false)
DEF_OP(tanh, tanh(a-b), 0, false, false)
DEF_OP(exp, exp(a-b), 0, false, false)
DEF_OP(log, log(a-b), 0, false, false)
#endif
#ifdef PASS4
template <class T> inline T gf_sqrt(T a) {return (T)floor(sqrt( a));}
inline float32 gf_sqrt(float32 a) {return sqrtf(a) ;}
inline float64 gf_sqrt(float64 a) {return sqrt( a) ;}
template <class T> inline Plex<T> cx_sqsub(const Plex<T>& a, const Plex<T>& b) { Plex<T> v=a-b; return v*v; }
template <class T> inline Plex<T> cx_abssub(const Plex<T>& a, const Plex<T>& b) { Plex<T> v=a-b; return norm(v); }
template <class T> inline Plex<T> gf_c2p(const Plex<T>& a) {
return Plex<T>(hypot(a.real(),a.imag()),atan2(a.real(),a.imag())*(18000 / M_PI));
}
template <class T> inline Plex<T> gf_p2c(const Plex<T>& a) {
return Plex<T>((float64)a.real() * sin((float64)a.imag() * (M_PI / 18000)),
(float64)a.real() * cos((float64)a.imag() * (M_PI / 18000)));
}
/*
template <class T> inline Plex<T> cx_atan2 (Plex<T>& a, Plex<T>& b) {
if (b==0) return 0;
Plex<T> v=a/b;
return (log(1+iz)-log(log(1-iz))/2i;
// but this is not taking care of sign stuff...
// and then what's the use of atan2 on complexes? (use C.log ...)
}
*/
//!@#$ neutral,is_neutral,is_absorbent are impossible to use here
DEF_OP(cx_mul, a*b, 1, false, false)
DEF_OP(cx_mulconj, a*conj(b), 1, false, false)
DEF_OP(cx_div, a/b, 1, false, false)
DEF_OP(cx_divconj, a/conj(b), 1, false, false)
DEF_OP(cx_sqsub, cx_sqsub(a,b), 0, false, false)
DEF_OP(cx_abssub, cx_abssub(a,b), 0, false, false)
DEF_OP(cx_sin, sin(a-b), 0, false, false)
DEF_OP(cx_cos, cos(a-b), 0, false, false)
//DEF_OP(cx_atan2,atan2(a,b), 0, false, false)
DEF_OP(cx_tanh, tanh(a-b), 0, false, false)
DEF_OP(cx_exp, exp(a-b), 0, false, false)
DEF_OP(cx_log, log(a-b), 0, false, false)
DEF_OP(c2p, gf_c2p(a-b), 0, false, false)
DEF_OP(p2c, gf_p2c(a)+b, 0, false, false)
#endif
extern Numop op_table1[], op_table2[], op_table3[], op_table4[];
extern const long op_table1_n, op_table2_n, op_table3_n, op_table4_n;
#ifdef PASS1
Numop op_table1[] = {
DECL_OP(ignore, "ignore", OP_ASSOC),
DECL_OP(put, "put", OP_ASSOC),
DECL_OP(add, "+", OP_ASSOC|OP_COMM), // "LINV=sub"
DECL_OP(sub, "-", 0),
DECL_OP(bus, "inv+", 0),
DECL_OP(mul, "*", OP_ASSOC|OP_COMM),
DECL_OP_NOFLOAT(mulshr8, "*>>8", OP_ASSOC|OP_COMM),
DECL_OP(div, "/", 0),
DECL_OP_NOFLOAT(div2, "div", 0),
DECL_OP(vid, "inv*", 0),
DECL_OP_NOFLOAT(vid2,"swapdiv", 0),
DECL_OP_NOFLOAT(mod, "%", 0),
DECL_OP_NOFLOAT(dom, "swap%", 0),
DECL_OP_NOFLOAT(rem, "rem", 0),
DECL_OP_NOFLOAT(mer, "swaprem", 0),
};
const long op_table1_n = COUNT(op_table1);
#endif
#ifdef PASS2
Numop op_table2[] = {
DECL_OP_NOFLOAT(gcd, "gcd", OP_ASSOC|OP_COMM),
DECL_OP_NOFLOAT(gcd2, "gcd2", OP_ASSOC|OP_COMM),
DECL_OP_NOFLOAT(lcm, "lcm", OP_ASSOC|OP_COMM),
DECL_OP(or , "|", OP_ASSOC|OP_COMM),
DECL_OP(xor, "^", OP_ASSOC|OP_COMM),
DECL_OP(and, "&", OP_ASSOC|OP_COMM),
DECL_OP_NOFOLD(shl, "<<", 0),
DECL_OP_NOFOLD(shr, ">>", 0),
DECL_OP_NOFOLD(sc_and,"&&", 0),
DECL_OP_NOFOLD(sc_or, "||", 0),
DECL_OP(min, "min", OP_ASSOC|OP_COMM),
DECL_OP(max, "max", OP_ASSOC|OP_COMM),
DECL_OP_NOFOLD(eq, "==", OP_COMM),
DECL_OP_NOFOLD(ne, "!=", OP_COMM),
DECL_OP_NOFOLD(gt, ">", 0),
DECL_OP_NOFOLD(le, "<=", 0),
DECL_OP_NOFOLD(lt, "<", 0),
DECL_OP_NOFOLD(ge, ">=", 0),
DECL_OP_NOFOLD(cmp, "cmp",0),
};
const long op_table2_n = COUNT(op_table2);
#endif
#ifdef PASS3
uint8 clipadd(uint8 a, uint8 b) { int32 c=a+b; return c<0?0:c>255?255:c; }
int16 clipadd(int16 a, int16 b) { int32 c=a+b; return c<-0x8000?-0x8000:c>0x7fff?0x7fff:c; }
int32 clipadd(int32 a, int32 b) { int64 c=a+b; return c<-0x80000000?-0x80000000:c>0x7fffffff?0x7fffffff:c; }
int64 clipadd(int64 a, int64 b) { int64 c=(a>>1)+(b>>1)+(a&b&1), p=nt_smallest((int64 *)0), q=nt_greatest((int64 *)0);
return c<p/2?p:c>q/2?q:a+b; }
uint8 clipsub(uint8 a, uint8 b) { int32 c=a-b; return c<0?0:c>255?255:c; }
int16 clipsub(int16 a, int16 b) { int32 c=a-b; return c<-0x8000?-0x8000:c>0x7fff?0x7fff:c; }
int32 clipsub(int32 a, int32 b) { int64 c=a-b; return c<-0x80000000?-0x80000000:c>0x7fffffff?0x7fffffff:c; }
int64 clipsub(int64 a, int64 b) { int64 c=(a>>1)-(b>>1); //???
int64 p=nt_smallest((int64 *)0), q=nt_greatest((int64 *)0);
return c<p/2?p:c>q/2?q:a-b; }
Numop op_table3[] = {
DECL_OP_NOFOLD(sinmul, "sin*", 0),
DECL_OP_NOFOLD(cosmul, "cos*", 0),
DECL_OP_NOFOLD(atan, "atan", 0),
DECL_OP_NOFOLD(tanhmul,"tanh*", 0),
DECL_OP_NOFOLD(gamma, "gamma", 0),
DECL_OP_NOFOLD(pow, "**", 0),
DECL_OP_NOFOLD(logmul, "log*", 0),
// 0.8
DECL_OP(clipadd,"clip+", OP_ASSOC|OP_COMM),
DECL_OP(clipsub,"clip-", 0),
DECL_OP_NOFOLD(abssub,"abs-", OP_COMM),
DECL_OP_NOFOLD(sqsub, "sq-", OP_COMM),
DECL_OP_NOFOLD(avg, "avg", OP_COMM),
DECL_OP_NOFOLD(hypot, "hypot",OP_COMM), // huh, almost OP_ASSOC
DECL_OP_NOFOLD(sqrt, "sqrt", 0),
DECL_OP_NOFOLD(rand, "rand", 0),
//DECL_OP_NOFOLD(erf,"erf*", 0),
DECL_OP_NOFOLD_NOFLOAT(weight,"weight",OP_COMM),
DECL_OP_NOFOLD_NOFLOAT(rol,"rol",0),
DECL_OP_NOFOLD_NOFLOAT(ror,"ror",0),
DECL_OP_NOFOLD_FLOAT(sin, "sin", 0),
DECL_OP_NOFOLD_FLOAT(cos, "cos", 0),
DECL_OP_NOFOLD_FLOAT(atan2,"atan2", 0),
DECL_OP_NOFOLD_FLOAT(tanh, "tanh", 0),
DECL_OP_NOFOLD_FLOAT(exp, "exp", 0),
DECL_OP_NOFOLD_FLOAT(log, "log", 0),
};
const long op_table3_n = COUNT(op_table3);
#endif
#ifdef PASS4
Numop op_table4[] = {
DECL_VOP(cx_mul, "C.*", OP_ASSOC|OP_COMM,2),
DECL_VOP(cx_mulconj, "C.*conj", OP_ASSOC|OP_COMM,2),
DECL_VOP(cx_div, "C./", 0,2),
DECL_VOP(cx_divconj, "C./conj", 0,2),
DECL_VOP(cx_sqsub, "C.sq-", OP_COMM,2),
DECL_VOP(cx_abssub, "C.abs-", OP_COMM,2),
DECL_VOP_NOFOLD_FLOAT(cx_sin, "C.sin", 0,2),
DECL_VOP_NOFOLD_FLOAT(cx_cos, "C.cos", 0,2),
// DECL_VOP_NOFOLD_FLOAT(cx_atan2,"C.atan2",0,2),
DECL_VOP_NOFOLD_FLOAT(cx_tanh, "C.tanh", 0,2),
DECL_VOP_NOFOLD_FLOAT(cx_exp, "C.exp", 0,2),
DECL_VOP_NOFOLD_FLOAT(cx_log, "C.log", 0,2),
DECL_VOP_NOFOLD( c2p, "c2p", 0,2),
DECL_VOP_NOFOLD( p2c, "p2c", 0,2),
};
const long op_table4_n = COUNT(op_table4);
#endif
// D=dictionary, A=table, A##_n=table count.
#define INIT_TABLE(D,A) for(int i=0; i<A##_n; i++) D[string(A[i].name)]=&A[i];
#ifdef PASS1
std::map<string,NumberType *> number_type_dict;
std::map<string,Numop *> op_dict;
std::map<string,Numop *> vop_dict;
void startup_number () {
INIT_TABLE( op_dict,op_table1)
INIT_TABLE( op_dict,op_table2)
INIT_TABLE( op_dict,op_table3)
INIT_TABLE(vop_dict,op_table4)
INIT_TABLE(number_type_dict,number_type_table)
for (int i=0; i<COUNT(number_type_table); i++) {
number_type_table[i].index = (NumberTypeE) i;
char a[64];
strcpy(a,number_type_table[i].aliases);
char *b = strchr(a,',');
if (b) {
*b=0;
number_type_dict[string(b+1)]=&number_type_table[i];
}
number_type_dict[string(a)]=&number_type_table[i];
}
// S:name; M:mode; F:replacement function;
#define OVERRIDE_INT(S,M,F) { \
Numop *foo = op_dict[string(#S)]; \
foo->on_uint8.M=F; \
foo->on_int16.M=F; \
foo->on_int32.M=F; }
OVERRIDE_INT(ignore,map,quick_ign_map);
OVERRIDE_INT(ignore,zip,quick_ign_zip);
//OVERRIDE_INT(put,map,quick_put_map);
//OVERRIDE_INT(put,zip,quick_put_zip);
//OVERRIDE_INT(%,map,quick_mod_map); // !@#$ does that make an improvement at all?
}
#endif
|