1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
|
/*
VASP modular - vector assembling signal processor / objects for Max/MSP and PD
Copyright (c) 2002 Thomas Grill (xovo@gmx.net)
For information on usage and redistribution, and for a DISCLAIMER OF ALL
WARRANTIES, see the file, "license.txt," in this distribution.
*/
#include "main.h"
#include "ops_wnd.h"
#include "oploop.h"
#include <math.h>
#include <string.h>
#ifndef PI
#define PI 3.1415926535897932384
#endif
// --- window --------------------------
typedef R (*wfunc)(R i,const OpParam &p);
inline R wf_sin(R i,const OpParam &p) { return sin(i*p.wnd.p1+p.wnd.p2); }
inline R wf_hanning(R i,const OpParam &p) { return 0.5*(1+cos(i*p.wnd.p1+p.wnd.p2)); }
inline R wf_hamming(R i,const OpParam &p) { return 0.54 + 0.46 * cos(i*p.wnd.p1+p.wnd.p2); }
inline R wf_blackman(R i,const OpParam &p) { const R x = i*p.wnd.p1+p.wnd.p2; return 0.42+0.5*cos(x)+0.08*cos(2*x); }
inline R wf_connes(R i,const OpParam &p) { const R x = i*p.wnd.p1+p.wnd.p2,x2 = 1-x*x; return x2*x2; }
inline R wf_welch(R i,const OpParam &p) { const R x = i*p.wnd.p1+p.wnd.p2; return 1-x*x; }
inline R wf_lanczos(R i,const OpParam &p) { const R x = i*p.wnd.p1+p.wnd.p2; return x?sin(x)/x:1; }
//inline R wf_gaussian(R i,const OpParam &p) { const R x = i*p.wnd.p1+p.wnd.p2; return pow(2, (-1 * (x / p.wnd.p3) * (x / p.wnd.p3))); }
//inline R wf_kaiser(R i,const OpParam &p) { const R x = i*p.wnd.p1+p.wnd.p2; return i0(p.wnd.p3 * sqrt(1 - (x * x))) / i0(p.wnd.p3); }
static V WndOp(wfunc wf,OpParam &p) {
register I i;
if(!p.wnd.mul) {
register S *dd = p.rddt;
_D_LOOP(i,p.frames) *dd = wf(i,p),dd += p.rds; _E_LOOP
}
else {
register const S *sd = p.rsdt;
register S *dd = p.rddt;
_D_LOOP(i,p.frames) *dd = *sd*wf(i,p),sd += p.rss,dd += p.rds; _E_LOOP
}
}
#define WNDOP(WFUNC,OPP) WndOp(WFUNC,OPP)
BL VecOp::d_window(OpParam &p)
{
// reverse direction?
BL rev = ((p.revdir?1:0)^(p.symm == 1?1:0)^(p.wnd.inv?1:0)) != 0;
// set middle sample (if existent) to 1
if(p.oddrem) p.SkipOddMiddle(1);
switch(p.wnd.wndtp) {
case 0: { // bevel (Bartlett)
register R inc,cur;
inc = (rev?-1.:1.)/p.frames; // increase
cur = rev?(1+inc/2):inc/2; // start
if(!p.wnd.mul) {
register S *dd = p.rddt;
register I i;
if(p.rds == 1)
_D_LOOP(i,p.frames) *(dd++) = cur,cur += inc; _E_LOOP
else
_D_LOOP(i,p.frames) *dd = cur,dd += p.rds,cur += inc; _E_LOOP
}
else {
register const S *sd = p.rsdt;
register S *dd = p.rddt;
register I i;
if(sd == dd)
if(p.rss == 1 && p.rds == 1)
_D_LOOP(i,p.frames) *(dd++) *= cur,cur += inc; _E_LOOP
else
_D_LOOP(i,p.frames) *dd *= cur,dd += p.rds,cur += inc; _E_LOOP
else
if(p.rss == 1 && p.rds == 1)
_D_LOOP(i,p.frames) *(dd++) = *(sd++) * cur,cur += inc; _E_LOOP
else
_D_LOOP(i,p.frames) *dd = *sd * cur,sd += p.rss,dd += p.rds,cur += inc; _E_LOOP
}
break;
}
case 1: { // sine
p.wnd.p1 = (PI/2)/p.frames;
p.wnd.p2 = p.wnd.p1/2+(rev?PI/2:0);
WNDOP(wf_sin,p);
break;
}
case 2: { // Hanning
p.wnd.p1 = PI/p.frames;
p.wnd.p2 = p.wnd.p1/2+(rev?0:PI);
WNDOP(wf_hanning,p);
break;
}
case 3: { // Hamming
p.wnd.p1 = PI/p.frames;
p.wnd.p2 = p.wnd.p1/2+(rev?0:PI);
WNDOP(wf_hamming,p);
break;
}
case 4: { // Blackman
p.wnd.p1 = PI/p.frames;
p.wnd.p2 = p.wnd.p1/2+(rev?0:PI);
WNDOP(wf_blackman,p);
break;
}
case 5: { // Connes (xxx)
p.wnd.p1 = 1./p.frames;
p.wnd.p2 = p.wnd.p1/2+(rev?1:0);
WNDOP(wf_connes,p);
break;
}
case 6: { // Welch (xxx)
p.wnd.p1 = 1./p.frames;
p.wnd.p2 = p.wnd.p1/2+(rev?1:0);
WNDOP(wf_welch,p);
break;
}
case 7: { // Lanczos (xxx)
p.wnd.p1 = PI/p.frames;
p.wnd.p2 = p.wnd.p1/2+(rev?0:PI);
WNDOP(wf_lanczos,p);
break;
}
default: {
post("%s: Window function #%i not known",p.opname,p.wnd.wndtp);
return false;
}
}
return true;
}
Vasp *VaspOp::m_window(OpParam &p,CVasp &src,const Argument &arg,CVasp *dst,BL inv,BL mul,BL symm)
{
static const int wndnum = 8;
static const char *wndtps[wndnum] = {"lin","sin","hanning","hamming","blackman","connes","welch","lanczos" /*,"gaussian","kaiser"*/};
Vasp *ret = NULL;
RVecBlock *vecs = GetRVecs(p.opname,src,dst);
if(vecs) {
p.wnd.wndtp = -1;
if(arg.IsList() && arg.GetList().Count() >= 1) {
// window mode
const flext::AtomList &l = arg.GetList();
if(flext::IsSymbol(l[0])) {
I i;
const C *s = flext::GetString(l[0]);
p.wnd.wndtp = -1;
for(i = 0; i < wndnum; ++i)
if(!strcmp(wndtps[i],s)) { p.wnd.wndtp = i; break; }
}
else if(flext::CanbeInt(l[0])) {
p.wnd.wndtp = flext::GetAInt(l[0]);
}
else p.wnd.wndtp = -1;
}
if(p.wnd.wndtp < 0) {
post("%s - invalid window type - using lin",p.opname);
p.wnd.wndtp = 0;
}
p.wnd.inv = inv;
p.wnd.mul = mul;
ret = DoOp(vecs,VecOp::d_window,p,symm);
delete vecs;
}
return ret;
}
VASP_ANYOP("vasp.window vasp.wnd",window,0,false,VASP_ARG(),"Sets target vasp to window function")
VASP_ANYOP("vasp.*window vasp.*wnd",mwindow,0,true,VASP_ARG(),"Multiplies a vasp by window function")
VASP_ANYOP("vasp.!window vasp.!wnd",iwindow,0,false,VASP_ARG(),"Sets target vasp to reverse window function")
VASP_ANYOP("vasp.*!window vasp.!wnd",miwindow,0,true,VASP_ARG(),"Multiplies a vasp by reverse window function")
VASP_ANYOP("vasp.xwindow vasp.xwnd",xwindow,0,false,VASP_ARG(),"Sets target vasp to symmetrical window function")
VASP_ANYOP("vasp.*xwindow vasp.*xwnd",mxwindow,0,true,VASP_ARG(),"Multiplies a vasp by symmetrical window function")
|