aboutsummaryrefslogtreecommitdiff
path: root/chaos/src/ikeda_laser_map.hpp
blob: 39d75c43314f49ba55d69e40e359533af098aa82 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
// 
//  
//  chaos~
//  Copyright (C) 2004  Tim Blechmann
//  
//  This program is free software; you can redistribute it and/or modify
//  it under the terms of the GNU General Public License as published by
//  the Free Software Foundation; either version 2 of the License, or
//  (at your option) any later version.
//  
//  This program is distributed in the hope that it will be useful,
//  but WITHOUT ANY WARRANTY; without even the implied warranty of
//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
//  GNU General Public License for more details.
//  
//  You should have received a copy of the GNU General Public License
//  along with this program; see the file COPYING.  If not, write to
//  the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
//  Boston, MA 02111-1307, USA.

#include "map_base.hpp"
#include <cmath>

//  ikeda laser map: z[n+1] = roh + c2 * z[n] * 
//                            exp (j * (c1 - c3 / (1 + abs(z) * abs(z))))
//                   z is complex
//
//            equal: x[n+1] = roh + c2 * (x[n] * cos(tau) - y[n] * sin (tau))
//                   y[n+1] = c2 * (x[n] * sin(tau) + y[n] * cos(tau))
//                   tau = c1 - (c2 / (1 + x*x + y*y))
//
//  taken from Willi-Hans Steeb: Chaos and Fractals

class ikeda:
	protected map_base
{
public:
	ikeda()
		: m_c1(0.4), m_c2(0.9), m_c3(9), m_roh(0.85)
	{
		m_num_eq = 2;
		m_data = new data_t[2];
		set_x(0.5);
		set_y(0.5);
	}

	~ikeda()
	{
		delete m_data;
	}

	virtual void m_step()
	{
		data_t x = m_data[0];
		data_t y = m_data[1];
		
		data_t tau = m_c1 - m_c3 / (1 + x*x + y*y);
		data_t cos_tau = cos(tau);
		data_t sin_tau = sin(tau);

		m_data[0] = m_roh + m_c2 * (x * cos_tau - y * sin_tau);
		m_data[1] = m_c2 * (x * sin_tau + y * cos_tau);
	}
	

	void set_x(t_float f)
	{
		m_data[0] = (data_t) f;
	}

	t_float get_x()
	{
		return (t_float)m_data[0];
	}

	void set_y(t_float f)
	{
		m_data[1] = (data_t) f;
	}

	t_float get_y()
	{
		return (t_float)m_data[1];
	}


	void set_c1(t_float f)
	{
		m_c1 = (data_t) f;
	}

	t_float get_c1()
	{
		return (t_float)m_c1;
	}


	void set_c2(t_float f)
	{
		m_c2[1] = (data_t) f;
	}

	t_float get_c2()
	{
		return (t_float)m_c2;
	}


	void set_c3(t_float f)
	{
		m_c3 = (data_t) f;
	}

	t_float get_c3()
	{
		return (t_float)m_c3;
	}


	void set_roh(t_float f)
	{
		m_roh = (data_t) f;
	}

	t_float get_roh()
	{
		return (t_float)m_roh;
	}

	
private:
	data_t m_c1, m_c2, m_c3, m_roh;
};


#define IKEDA_CALLBACKS									\
MAP_CALLBACKS;											\
FLEXT_CALLVAR_F(m_system->get_c1, m_system->set_c1);	\
FLEXT_CALLVAR_F(m_system->get_c2, m_system->set_c2);	\
FLEXT_CALLVAR_F(m_system->get_c3, m_system->set_c3);	\
FLEXT_CALLVAR_F(m_system->get_roh, m_system->set_roh);	\
FLEXT_CALLVAR_F(m_system->get_x, m_system->set_x);		\
FLEXT_CALLVAR_F(m_system->get_y, m_system->set_y);		\


#define IKEDA_ATTRIBUTES										\
MAP_ATTRIBUTES;													\
FLEXT_ADDATTR_VAR("c1",m_system->get_c1, m_system->set_c1);		\
FLEXT_ADDATTR_VAR("c2",m_system->get_c2, m_system->set_c2);		\
FLEXT_ADDATTR_VAR("c3",m_system->get_c3, m_system->set_c3);		\
FLEXT_ADDATTR_VAR("roh",m_system->get_roh, m_system->set_roh);	\
FLEXT_ADDATTR_VAR("x",m_system->get_x, m_system->set_x);		\
FLEXT_ADDATTR_VAR("y",m_system->get_y, m_system->set_y);