aboutsummaryrefslogtreecommitdiff
path: root/rvbap.c
blob: 4c7b87a8f5d571083549c825a87c3a3cd101f03c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
/* rvbap.c vers 1.1 

written by Ville Pulkki 1999-2003
Helsinki University of Technology 
and 
Unversity of California at Berkeley
and written by Olaf Matthes 2003, 2007
Pd port by Frank Barknecht

See copyright in file with name LICENSE.txt  */


#include <math.h>

#ifdef MAXMSP
#include "ext.h"                /* you must include this - it contains the external object's link to max */
#define t_float float
#endif

#ifdef PD 
#include "m_pd.h"               /* you must include this - it contains the external object's link to pure data */
#endif

#define MAX_LS_SETS 100         // maximum number of loudspeaker sets (triplets or pairs) allowed
#define MAX_LS_AMOUNT 55        // maximum amount of loudspeakers, can be increased

#ifdef _WINDOWS
#define sqrtf sqrt
#endif

#ifdef MAXMSP
typedef struct vbap             /* This defines the object as an entity made up of other things */
{
    t_object x_ob;                
    long x_azi;     // panning direction azimuth
    long x_ele;     // panning direction elevation      
    t_float x_dist; // sound source distance    (1.0-infinity)
    void *x_outlet0;                /* outlet creation - inlets are automatic */
    void *x_outlet1;                
    void *x_outlet2;                
    void *x_outlet3;                
    void *x_outlet4;                
    t_float x_set_inv_matx[MAX_LS_SETS][9];// inverse matrice for each loudspeaker set
    t_float x_set_matx[MAX_LS_SETS][9];    // matrice for each loudspeaker set
    long x_lsset[MAX_LS_SETS][3];          // channel numbers of loudspeakers in each LS set 
    long x_lsset_available;                // have loudspeaker sets been defined with define_loudspeakers
    long x_lsset_amount;                   // amount of loudspeaker sets
    long x_ls_amount;                      // amount of loudspeakers
    long x_dimension;                      // 2 or 3
    long x_spread;                         // speading amount of virtual source (0-100)
    t_float x_spread_base[3];              // used to create uniform spreading
    t_float x_reverb_gs[MAX_LS_SETS];      // correction value for each loudspeaker set to get equal volume
} t_rvbap;
#endif


#ifdef PD
typedef struct vbap             /* This defines the object as an entity made up of other things */
{
    t_object x_ob;              
    t_float x_azi;  // panning direction azimuth
    t_float x_ele;  // panning direction elevation      
    t_float x_dist; // sound source distance    (1.0-infinity)
    void *x_outlet0;                /* outlet creation - inlets are automatic */
    void *x_outlet1;                
    void *x_outlet2;                
    void *x_outlet3;                
    void *x_outlet4;                
    t_float x_set_inv_matx[MAX_LS_SETS][9];// inverse matrice for each loudspeaker set
    t_float x_set_matx[MAX_LS_SETS][9];    // matrice for each loudspeaker set
    long x_lsset[MAX_LS_SETS][3];          // channel numbers of loudspeakers in each LS set 
    long x_lsset_available;                // have loudspeaker sets been defined with define_loudspeakers
    long x_lsset_amount;                   // amount of loudspeaker sets
    long x_ls_amount;                      // amount of loudspeakers
    long x_dimension;                      // 2 or 3
    t_float x_spread;                      // speading amount of virtual source (0-100)
    t_float x_spread_base[3];              // used to create uniform spreading
    t_float x_reverb_gs[MAX_LS_SETS];      // correction value for each loudspeaker set to get equal volume
} t_rvbap;
#endif

// Globals

static void new_spread_dir(t_rvbap *x, t_float spreaddir[3], t_float vscartdir[3], t_float spread_base[3]);
static void new_spread_base(t_rvbap *x, t_float spreaddir[3], t_float vscartdir[3]);
#ifdef MAXMSP
static void *rvbap_class;
static void rvbap_assist(t_rvbap *x, void *b, long m, long a, char *s);
static void rvbap_in1(t_rvbap *x, long n);
static void rvbap_in2(t_rvbap *x, long n);
static void rvbap_in3(t_rvbap *x, long n);
static void rvbap_in4(t_rvbap *x, long n);
static void rvbap_ft1(t_rvbap *x, double n);
static void rvbap_ft2(t_rvbap *x, double n);
static void rvbap_ft3(t_rvbap *x, double n);
static void rvbap_ft4(t_rvbap *x, double n);
#endif
#ifdef PD
static t_class *rvbap_class;
#endif
static void cross_prod(t_float v1[3], t_float v2[3],
                t_float v3[3]);
static void additive_vbap(t_float *final_gs, t_float cartdir[3], t_rvbap *x);
static void rvbap_bang(t_rvbap *x);
static void rvbap_matrix(t_rvbap *x, t_symbol *s, int ac, t_atom *av);
static void spread_it(t_rvbap *x, t_float *final_gs);
static void *rvbap_new(t_symbol *s, int ac, t_atom *av); // using A_GIMME - typed message list
static void vbap(t_float g[3], long ls[3], t_rvbap *x);
static void angle_to_cart(long azi, long ele, t_float res[3]);
static void cart_to_angle(t_float cvec[3], t_float avec[3]);
static void equal_reverb(t_rvbap *x, t_float *final_gs);

/* above are the prototypes for the methods/procedures/functions you will use */

#ifdef PD
void rvbap_setup(void)
{
    rvbap_class = class_new(gensym("rvbap"), (t_newmethod)rvbap_new, 0, (short)sizeof(t_rvbap), 0, A_GIMME, 0); 
    /* rvbap_new = creation function, A_DEFLONG = its (optional) arguement is a long (32-bit) int */
    class_addbang(rvbap_class, rvbap_bang);
    class_addmethod(rvbap_class, (t_method)rvbap_matrix, gensym("loudspeaker-matrices"), A_GIMME, 0);
}
#endif

#ifdef MAXMSP
int main(void)
{
    setup((t_messlist **)&rvbap_class, (method)rvbap_new, 0L, (short)sizeof(t_rvbap), 0L, A_GIMME, 0); 
    /* rvbap_new = creation function, A_DEFLONG = its (optional) arguement is a long (32-bit) int */
    addmess((method)rvbap_assist, "assist", A_CANT, 0);
    addbang((method)rvbap_bang);         /* the procedure it uses when it gets a bang in the left inlet */
    addinx((method)rvbap_in1, 1);        /* the rocedure for an int in the right inlet (inlet 1) */
    addinx((method)rvbap_in2, 2);        /* the rocedure for an int in the right inlet (inlet 2) */
    addinx((method)rvbap_in3, 3);
    addinx((method)rvbap_in4, 4);
    addftx((method)rvbap_ft1, 1);        /* the rocedure for an int in the right inlet (inlet 1) */
    addftx((method)rvbap_ft2, 2);        /* the rocedure for an int in the right inlet (inlet 2) */
    addftx((method)rvbap_ft3, 3);
    addftx((method)rvbap_ft4, 4);
    addmess((method)rvbap_matrix, "loudspeaker-matrices", A_GIMME, 0);
    post("rvbap v1.1, © 2003-2007 by Olaf Matthes, based on vbap by Ville Pulkki");
	return 0;
}

static void rvbap_assist(t_rvbap *x, void *b, long m, long a, char *s)
{
    switch(m) {
        case 1: // inlet
            switch(a) {
                case 0:
                sprintf(s, "define_loudspeakers / Bang to output actual values.");
                break;
                case 1:
                sprintf(s, "(int) azimuth");
                break;
                case 2:
                sprintf(s, "(int) elevation");
                break;
                case 3:
                sprintf(s, "(int) spreading");
                break;
                case 4:
                sprintf(s, "(t_float) distance");
                break;
            }
        break;
        case 2: // outlet
            switch(a) {
                case 0:
                sprintf(s, "(list) matrix~ values");
                break;
                case 1:
                sprintf(s, "(int) actual azimuth");
                break;
                case 2:
                sprintf(s, "(int) actual elevation");
                break;
                case 3:
                sprintf(s, "(int) actual spreading");
                break;
                case 4:
                sprintf(s, "(t_float) actual distance");
                break;
            }
        break;
    }
}
#endif
/* end MAXMSP */

static void angle_to_cart(long azi, long ele, t_float res[3])
/* converts angular coordinates to cartesian */
{
  t_float atorad = (2.0 * 3.141592653589793 / 360.0) ;
  res[0] = cos((t_float) azi * atorad) * cos((t_float) ele * atorad);
  res[1] = sin((t_float) azi * atorad) * cos((t_float) ele * atorad);
  res[2] = sin((t_float) ele * atorad);
}

static void cart_to_angle(t_float cvec[3], t_float avec[3])
// converts cartesian coordinates to angular
{
  t_float tmp, tmp2, tmp3, tmp4;
  t_float atorad = (t_float)(2.0 * 3.141592653589793 / 360.0) ;
  t_float pi =  (t_float)3.141592653589793;
  t_float power;
  t_float dist, atan_y_per_x, atan_x_pl_y_per_z;
  t_float azi, ele;
  
  if(cvec[0]==0.0)
    atan_y_per_x = pi / 2;
  else
    atan_y_per_x = atan(cvec[1] / cvec[0]);
  azi = atan_y_per_x / atorad;
  if(cvec[0]<0.0)
    azi +=180;
  dist = sqrt(cvec[0]*cvec[0] + cvec[1]*cvec[1]);
  if(cvec[2]==0.0)
    atan_x_pl_y_per_z = 0.0;
  else
    atan_x_pl_y_per_z = atan(cvec[2] / dist);
  if(dist == 0.0)
    if(cvec[2]<0.0)
      atan_x_pl_y_per_z = -pi/2.0;
    else
      atan_x_pl_y_per_z = pi/2.0;
  ele = atan_x_pl_y_per_z / atorad;
  dist = sqrt(cvec[0] * cvec[0] +cvec[1] * cvec[1] +cvec[2]*cvec[2]);
  avec[0]=azi;
  avec[1]=ele;
  avec[2]=dist;
}


static void vbap(t_float g[3], long ls[3], t_rvbap *x)
{
  /* calculates gain factors using loudspeaker setup and given direction */
  t_float power;
  int i,j,k, gains_modified;
  t_float small_g;
  t_float big_sm_g, gtmp[3];
  long winner_set=0;
  t_float cartdir[3];
  t_float new_cartdir[3];
  t_float new_angle_dir[3];
  long dim = x->x_dimension;
  long neg_g_am, best_neg_g_am;
  
  // transfering the azimuth angle to a decent value
  while(x->x_azi > 180)
    x->x_azi -= 360;
  while(x->x_azi < -179)
    x->x_azi += 360;
    
  // transferring the elevation to a decent value
  if(dim == 3){
    while(x->x_ele > 180)
        x->x_ele -= 360;
    while(x->x_ele < -179)
        x->x_ele += 360;
  } else
    x->x_ele = 0;
  
  
  // go through all defined loudspeaker sets and find the set which
  // has all positive values. If such is not found, set with largest
  // minimum value is chosen. If at least one of gain factors of one LS set is negative
  // it means that the virtual source does not lie in that LS set. 
  
  angle_to_cart(x->x_azi,x->x_ele,cartdir);
  big_sm_g = -100000.0;   // initial value for largest minimum gain value
  best_neg_g_am=3;        // how many negative values in this set
  
  
  for(i=0;i<x->x_lsset_amount;i++){
    small_g = 10000000.0;
    neg_g_am = 3;
    for(j=0;j<dim;j++){
      gtmp[j]=0.0;
      for(k=0;k<dim;k++)
        gtmp[j]+=cartdir[k]* x->x_set_inv_matx[i][k+j*dim];
      if(gtmp[j] < small_g)
        small_g = gtmp[j];
      if(gtmp[j]>= -0.01)
        neg_g_am--;
    }
    if(small_g > big_sm_g && neg_g_am <= best_neg_g_am){
      big_sm_g = small_g;
      best_neg_g_am = neg_g_am; 
      winner_set=i;
      g[0]=gtmp[0]; g[1]=gtmp[1];
      ls[0]= x->x_lsset[i][0]; ls[1]= x->x_lsset[i][1];
      if(dim==3){
        g[2]=gtmp[2];
        ls[2]= x->x_lsset[i][2];
      } else {
        g[2]=0.0;
        ls[2]=0;
      }
    }
  }
  
  // If chosen set produced a negative value, make it zero and
  // calculate direction that corresponds  to these new
  // gain values. This happens when the virtual source is outside of
  // all loudspeaker sets. 
  
  if(dim==3){
    gains_modified=0;
    for(i=0;i<dim;i++)
        if(g[i]<-0.01){
            g[i]=0.0001;
            gains_modified=1;
        }   
    if(gains_modified==1){
        new_cartdir[0] =  x->x_set_matx[winner_set][0] * g[0] 
                        + x->x_set_matx[winner_set][1] * g[1]
                        + x->x_set_matx[winner_set][2] * g[2];
        new_cartdir[1] =  x->x_set_matx[winner_set][3] * g[0] 
                        + x->x_set_matx[winner_set][4] * g[1] 
                        + x->x_set_matx[winner_set][5] * g[2];
        new_cartdir[2] =  x->x_set_matx[winner_set][6] * g[0] 
                        + x->x_set_matx[winner_set][7] * g[1]
                        + x->x_set_matx[winner_set][8] * g[2];
        cart_to_angle(new_cartdir,new_angle_dir);
        x->x_azi = (long) (new_angle_dir[0] + 0.5);
        x->x_ele = (long) (new_angle_dir[1] + 0.5);
     }
  }
  
  power=sqrt(g[0]*g[0] + g[1]*g[1] + g[2]*g[2]);
  g[0] /= power;
  g[1] /= power;
  g[2] /= power;
}


static void cross_prod(t_float v1[3], t_float v2[3],
                t_float v3[3]) 
// vector cross product            
{
  t_float length;
  v3[0] = (v1[1] * v2[2] ) - (v1[2] * v2[1]);
  v3[1] = (v1[2] * v2[0] ) - (v1[0] * v2[2]);
  v3[2] = (v1[0] * v2[1] ) - (v1[1] * v2[0]);

  length= sqrt(v3[0]*v3[0] + v3[1]*v3[1] + v3[2]*v3[2]);
  v3[0] /= length;
  v3[1] /= length;
  v3[2] /= length;
}

static void additive_vbap(t_float *final_gs, t_float cartdir[3], t_rvbap *x)
// calculates gains to be added to previous gains, used in
// multiple direction panning (source spreading)
{
    t_float power;
    int i,j,k, gains_modified;
    t_float small_g;
    t_float big_sm_g, gtmp[3];
    long winner_set;
    t_float new_cartdir[3];
    t_float new_angle_dir[3];
    long dim = x->x_dimension;
    long neg_g_am, best_neg_g_am;
    t_float g[3];
    long ls[3] = { 0, 0, 0 };
    
    big_sm_g = -100000.0;
    best_neg_g_am=3;
  
    for(i=0;i<x->x_lsset_amount;i++){
      small_g = 10000000.0;
      neg_g_am = 3;
      for(j=0;j<dim;j++){
        gtmp[j]=0.0;
        for(k=0;k<dim;k++)
          gtmp[j]+=cartdir[k]* x->x_set_inv_matx[i][k+j*dim];
        if(gtmp[j] < small_g)
          small_g = gtmp[j];
        if(gtmp[j]>= -0.01)
            neg_g_am--;
        }
        if(small_g > big_sm_g && neg_g_am <= best_neg_g_am){
        big_sm_g = small_g;
        best_neg_g_am = neg_g_am; 
        winner_set=i;
        g[0]=gtmp[0]; g[1]=gtmp[1];
        ls[0]= x->x_lsset[i][0]; ls[1]= x->x_lsset[i][1];
        if(dim==3){
            g[2]=gtmp[2];
            ls[2]= x->x_lsset[i][2];
        } else {
            g[2]=0.0;
            ls[2]=0;
        }
        }
    }

    gains_modified=0;
    for(i=0;i<dim;i++)
        if(g[i]<-0.01){
            gains_modified=1;
        }
  
    if(gains_modified != 1){
        if(dim==3)
            power=sqrt(g[0]*g[0] + g[1]*g[1] + g[2]*g[2]);
        else
            power=sqrt(g[0]*g[0] + g[1]*g[1]);
        g[0] /= power;
        g[1] /= power;
        if(dim==3) 
            g[2] /= power;
        
        final_gs[ls[0]-1] += g[0];
        final_gs[ls[1]-1] += g[1];
        /* BUG FIX: this was causing negative indices with 2 dimensions so I
         * made it only try when using 3 dimensions.
         * 2006-08-13 <hans@at.or.at> */
        if(dim==3)
            final_gs[ls[2]-1] += g[2];
    }
}


static void new_spread_dir(t_rvbap *x, t_float spreaddir[3], t_float vscartdir[3], t_float spread_base[3])
// subroutine for spreading
{
    t_float beta,m_gamma;
    t_float a,b;
    t_float pi = 3.141592653589793;
    t_float power;
    
    m_gamma = acos(vscartdir[0] * spread_base[0] +
                    vscartdir[1] * spread_base[1] +
                    vscartdir[2] * spread_base[2])/pi*180;
    if(fabs(m_gamma) < 1){
        angle_to_cart(x->x_azi+90, 0, spread_base);
        m_gamma = acos(vscartdir[0] * spread_base[0] +
                    vscartdir[1] * spread_base[1] +
                    vscartdir[2] * spread_base[2])/pi*180;
    }
    beta = 180 - m_gamma;
    b=sin(x->x_spread * pi / 180) / sin(beta * pi / 180);
    a=sin((180- x->x_spread - beta) * pi / 180) / sin (beta * pi / 180);
    spreaddir[0] = a * vscartdir[0] + b * spread_base[0];
    spreaddir[1] = a * vscartdir[1] + b * spread_base[1];
    spreaddir[2] = a * vscartdir[2] + b * spread_base[2];
    
    power=sqrt(spreaddir[0]*spreaddir[0] + spreaddir[1]*spreaddir[1] 
                + spreaddir[2]*spreaddir[2]);
    spreaddir[0] /= power;
    spreaddir[1] /= power;
    spreaddir[2] /= power;
}

static void new_spread_base(t_rvbap *x, t_float spreaddir[3], t_float vscartdir[3])
// subroutine for spreading
{
    t_float d;
    t_float pi = 3.141592653589793;
    t_float power;
    
    d = cos(x->x_spread/180*pi);
    x->x_spread_base[0] = spreaddir[0] - d * vscartdir[0];
    x->x_spread_base[1] = spreaddir[1] - d * vscartdir[1];
    x->x_spread_base[2] = spreaddir[2] - d * vscartdir[2];
    power=sqrt(x->x_spread_base[0]*x->x_spread_base[0] + x->x_spread_base[1]*x->x_spread_base[1] 
                + x->x_spread_base[2]*x->x_spread_base[2]);
    x->x_spread_base[0] /= power;
    x->x_spread_base[1] /= power;
    x->x_spread_base[2] /= power;
}

static void spread_it(t_rvbap *x, t_float *final_gs)
// apply the sound signal to multiple panning directions
// that causes some spreading.
// See theory in paper V. Pulkki "Uniform spreading of amplitude panned
// virtual sources" in WASPAA 99

{
    t_float vscartdir[3];
    t_float spreaddir[16][3];
    t_float spreadbase[16][3];
    long i, spreaddirnum;
    t_float power;
    if(x->x_dimension == 3){
        spreaddirnum=16;
        angle_to_cart(x->x_azi,x->x_ele,vscartdir);
        new_spread_dir(x, spreaddir[0], vscartdir, x->x_spread_base);
        new_spread_base(x, spreaddir[0], vscartdir);
        cross_prod(x->x_spread_base, vscartdir, spreadbase[1]); // four orthogonal dirs
        cross_prod(spreadbase[1], vscartdir, spreadbase[2]);
        cross_prod(spreadbase[2], vscartdir, spreadbase[3]);
    
        // four between them
        for(i=0;i<3;i++) spreadbase[4][i] =  (x->x_spread_base[i] + spreadbase[1][i]) / 2.0;
        for(i=0;i<3;i++) spreadbase[5][i] =  (spreadbase[1][i] + spreadbase[2][i]) / 2.0;
        for(i=0;i<3;i++) spreadbase[6][i] =  (spreadbase[2][i] + spreadbase[3][i]) / 2.0;
        for(i=0;i<3;i++) spreadbase[7][i] =  (spreadbase[3][i] + x->x_spread_base[i]) / 2.0;
        
        // four at half spreadangle
        for(i=0;i<3;i++) spreadbase[8][i] =  (vscartdir[i] + x->x_spread_base[i]) / 2.0;
        for(i=0;i<3;i++) spreadbase[9][i] =  (vscartdir[i] + spreadbase[1][i]) / 2.0;
        for(i=0;i<3;i++) spreadbase[10][i] =  (vscartdir[i] + spreadbase[2][i]) / 2.0;
        for(i=0;i<3;i++) spreadbase[11][i] =  (vscartdir[i] + spreadbase[3][i]) / 2.0;
        
        // four at quarter spreadangle
        for(i=0;i<3;i++) spreadbase[12][i] =  (vscartdir[i] + spreadbase[8][i]) / 2.0;
        for(i=0;i<3;i++) spreadbase[13][i] =  (vscartdir[i] + spreadbase[9][i]) / 2.0;
        for(i=0;i<3;i++) spreadbase[14][i] =  (vscartdir[i] + spreadbase[10][i]) / 2.0;
        for(i=0;i<3;i++) spreadbase[15][i] =  (vscartdir[i] + spreadbase[11][i]) / 2.0;
        
        additive_vbap(final_gs,spreaddir[0],x); 
        for(i=1;i<spreaddirnum;i++){
            new_spread_dir(x, spreaddir[i], vscartdir, spreadbase[i]);
            additive_vbap(final_gs,spreaddir[i],x); 
        }
    } else if (x->x_dimension == 2) {
        spreaddirnum=6;     
        
        angle_to_cart(x->x_azi - x->x_spread, 0, spreaddir[0]);
        angle_to_cart(x->x_azi - x->x_spread/2, 0, spreaddir[1]);
        angle_to_cart(x->x_azi - x->x_spread/4, 0, spreaddir[2]);
        angle_to_cart(x->x_azi + x->x_spread/4, 0, spreaddir[3]);
        angle_to_cart(x->x_azi + x->x_spread/2, 0, spreaddir[4]);
        angle_to_cart(x->x_azi + x->x_spread, 0, spreaddir[5]);
        
        for(i=0;i<spreaddirnum;i++)
            additive_vbap(final_gs,spreaddir[i],x); 
    } else
        return;
        
    if(x->x_spread > 70)
        for(i=0;i<x->x_ls_amount;i++){
            final_gs[i] += (x->x_spread - 70) / 30.0 * (x->x_spread - 70) / 30.0 * 10.0;
        }
    
    for(i=0,power=0.0;i<x->x_ls_amount;i++){
        power += final_gs[i] * final_gs[i];
    }
        
    power = sqrt(power);
    for(i=0;i<x->x_ls_amount;i++){
        final_gs[i] /= power;
    }
}   
    

static void equal_reverb(t_rvbap *x, t_float *final_gs)
// calculate constant reverb gains for equally distributed
// reverb levels
// this is achieved by calculating gains for a sound source 
// that is everywhere, i.e. present in all directions

{
    t_float vscartdir[3];
    t_float spreaddir[16][3];
    t_float spreadbase[16][3];
    long i, spreaddirnum;
    t_float power;
    if(x->x_dimension == 3){
        spreaddirnum=5;     
        
        // horizontal plane
        angle_to_cart(90, 0, spreaddir[0]);
        angle_to_cart(180, 0, spreaddir[1]);
        angle_to_cart(270, 0, spreaddir[2]);
        
        // above, below
        angle_to_cart(0, 90, spreaddir[3]);
        angle_to_cart(0, -90, spreaddir[4]);
        
        for(i=1;i<spreaddirnum;i++){
            additive_vbap(x->x_reverb_gs,spreaddir[i],x); 
        }
    } else if (x->x_dimension == 2) {
        // for 2-D we claculate virtual sources 
        // every 45 degrees in a horizontal plane
        spreaddirnum=7;     
        
        angle_to_cart(90, 0, spreaddir[0]);
        angle_to_cart(180, 0, spreaddir[1]);
        angle_to_cart(270, 0, spreaddir[2]);
        angle_to_cart(45, 0, spreaddir[3]);
        angle_to_cart(135, 0, spreaddir[4]);
        angle_to_cart(225, 0, spreaddir[5]);
        angle_to_cart(315, 0, spreaddir[6]);
        
        for(i=0;i<spreaddirnum;i++)
            additive_vbap(x->x_reverb_gs,spreaddir[i],x); 
    } else
        return;
        
    for(i=0,power=0.0;i<x->x_ls_amount;i++){
        power += x->x_reverb_gs[i] * x->x_reverb_gs[i];
    }
        
    power = sqrt(power);
    for(i=0;i<x->x_ls_amount;i++){
        final_gs[i] /= power;
    }
}   
    
static void rvbap_bang(t_rvbap *x)            
// top level, vbap gains are calculated and outputted   
{
    t_atom at[MAX_LS_AMOUNT]; 
    t_float g[3];
    long ls[3];
    long i;
    t_float *final_gs, overdist, oversqrtdist;
    final_gs = (t_float *) getbytes(x->x_ls_amount * sizeof(t_float));
    if(x->x_lsset_available ==1){
        vbap(g, ls, x);
        for(i=0;i<x->x_ls_amount;i++)
            final_gs[i]=0.0;  
        for(i=0;i<x->x_dimension;i++){
            final_gs[ls[i]-1]=g[i];  
        }
        if(x->x_spread != 0){
            spread_it(x,final_gs);
        }
        overdist = 1 / x->x_dist;
        oversqrtdist = 1 / sqrt(x->x_dist);
        // build output for every loudspeaker
        for(i=0;i<x->x_ls_amount;i++)
		{
            // first, we output the gains for the direct (unreverberated) signals
            // these just decrease as the distance increases
#ifdef MAXMSP
            SETLONG(&at[0], i); 
            SETFLOAT(&at[1], (final_gs[i] / x->x_dist));
            outlet_list(x->x_outlet0, NULL, 2, at);
#endif
#ifdef PD
            SETFLOAT(&at[0], i);    
            SETFLOAT(&at[1], (final_gs[i] / x->x_dist));
            outlet_list(x->x_outlet0, gensym("list"), 2, at);
#endif
            // second, we output the gains for the reverberated signals
            // these are made up of a global (all speakers) and a local part
#ifdef MAXMSP
            SETLONG(&at[0], i+x->x_ls_amount);  // direct signals come first in matrix~
            SETFLOAT(&at[1], (((oversqrtdist / x->x_dist) * x->x_reverb_gs[i]) + (oversqrtdist * (1 - overdist) * final_gs[i])));
            outlet_list(x->x_outlet0, NULL, 2, at);
#endif
#ifdef PD
            SETFLOAT(&at[0], (i+x->x_ls_amount));   // direct signals come first in matrix~
            SETFLOAT(&at[1], (((oversqrtdist / x->x_dist) * x->x_reverb_gs[i]) + (oversqrtdist * (1 - overdist) * final_gs[i])));
            outlet_list(x->x_outlet0, gensym("list"), 2, at);
#endif
        }
#ifdef MAXMSP
        outlet_int(x->x_outlet1, x->x_azi); 
        outlet_int(x->x_outlet2, x->x_ele); 
        outlet_int(x->x_outlet3, x->x_spread); 
        outlet_float(x->x_outlet4, (double)x->x_dist); 
#endif
#ifdef PD
        outlet_float(x->x_outlet1, x->x_azi); 
        outlet_float(x->x_outlet2, x->x_ele); 
        outlet_float(x->x_outlet3, x->x_spread); 
        outlet_float(x->x_outlet4, x->x_dist); 
#endif
    }
    else
        post("rvbap: Configure loudspeakers first!");
    freebytes(final_gs, x->x_ls_amount * sizeof(t_float)); // bug fix added 9/00
}

/*--------------------------------------------------------------------------*/

static void rvbap_matrix(t_rvbap *x, t_symbol *s, int ac, t_atom *av)
// read in loudspeaker matrices
// and calculate the gains for the equally distributed
// reverb signal part (i.e. global reverb)
{
    long counter=0;
    long datapointer=0;
    long setpointer=0;
    long i;
    long deb=0;
    long azi = x->x_azi, ele = x->x_ele;    // store original values
    t_float g[3];
    long ls[3];
 
    if(ac>0)
#ifdef MAXMSP
        if(av[datapointer].a_type == A_LONG){
            x->x_dimension = av[datapointer++].a_w.w_long;
            x->x_lsset_available=1;
        } else
#endif
        if(av[datapointer].a_type == A_FLOAT){
            x->x_dimension = (long) av[datapointer++].a_w.w_float;
            x->x_lsset_available=1;
        } else {
            post("Error in loudspeaker data!");
            x->x_lsset_available=0;
            return;
        }
    //post("%d",deb++);
    if(ac>1) 
#ifdef MAXMSP
        if(av[datapointer].a_type == A_LONG)
            x->x_ls_amount = av[datapointer++].a_w.w_long;
        else
#endif
        if(av[datapointer].a_type == A_FLOAT)
            x->x_ls_amount = (long) av[datapointer++].a_w.w_float;
        else {
            post("rvbap: Error in loudspeaker data!");
            x->x_lsset_available=0;
            return;
        }
    else
        x->x_lsset_available=0;
    
    if(x->x_dimension == 3)
        counter = (ac - 2) / ((x->x_dimension * x->x_dimension*2) + x->x_dimension);
    if(x->x_dimension == 2)
        counter = (ac - 2) / ((x->x_dimension * x->x_dimension) + x->x_dimension);
    x->x_lsset_amount=counter;

    if(counter<=0) {
        post("rvbap: Error in loudspeaker data!");
        x->x_lsset_available=0;
        return;
    }
    
 
    while(counter-- > 0){
        for(i=0; i < x->x_dimension; i++){
#ifdef MAXMSP
            if(av[datapointer].a_type == A_LONG)
#endif
#ifdef PD
            if(av[datapointer].a_type == A_FLOAT)
#endif
            {
                 x->x_lsset[setpointer][i]=(long)av[datapointer++].a_w.w_float;
            }
            else{
                post("rvbap: Error in loudspeaker data!");
                x->x_lsset_available=0;
                return;
            }
        }   
        for(i=0; i < x->x_dimension*x->x_dimension; i++){
            if(av[datapointer].a_type == A_FLOAT){
                x->x_set_inv_matx[setpointer][i]=av[datapointer++].a_w.w_float;
            }
            else {
                post("rvbap: Error in loudspeaker data!");
                x->x_lsset_available=0;
                return;
            }
        }
        if(x->x_dimension == 3){ 
            for(i=0; i < x->x_dimension*x->x_dimension; i++){
                if(av[datapointer].a_type == A_FLOAT){
                    x->x_set_matx[setpointer][i]=av[datapointer++].a_w.w_float;
                }
                else {
                    post("rvbap: Error in loudspeaker data!");
                    x->x_lsset_available=0;
                    return;
                }
            }
        }
    
        setpointer++;
    }
    // now configure static reverb correction values...
    x->x_azi = x->x_ele = 0;
    vbap(g,ls, x);
    for(i=0;i<x->x_ls_amount;i++){
        x->x_reverb_gs[i]=0.0;
    }       
    for(i=0;i<x->x_dimension;i++){
        x->x_reverb_gs[ls[i]-1]=g[i];
        // post("reverb gs #%d = %f", i, x->x_reverb_gs[i]);
    }
    equal_reverb(x,x->x_reverb_gs);
            
/*  for(i=0; i<x->x_ls_amount; i++) // do this for every speaker
    {
            post("reverb gs #%d = %f", i, x->x_reverb_gs[i]);
    }   */
    post("rvbap: Loudspeaker setup configured!");
    x->x_azi = azi;     // restore original panning directions
    x->x_ele = ele;
}

#ifdef MAXMSP
static void rvbap_in1(t_rvbap *x, long n)                /* x = the instance of the object, n = the int received in the right inlet */
// panning angle azimuth
{
    x->x_azi = n;                           /* store n in a global variable */
    
}

static void rvbap_in2(t_rvbap *x, long n)                /* x = the instance of the object, n = the int received in the right inlet */
// panning angle elevation
{
    x->x_ele = n;                           /* store n in a global variable */

}
/*--------------------------------------------------------------------------*/

static void rvbap_in3(t_rvbap *x, long n)                /* x = the instance of the object, n = the int received in the right inlet */
// spread amount
{
    if (n<0) n = 0;
    if (n>100) n = 100;
    x->x_spread = n;                            /* store n in a global variable */
    
}

/*--------------------------------------------------------------------------*/

static void rvbap_in4(t_rvbap *x, long n)                /* x = the instance of the object, n = the int received in the right inlet */
// distance
{
    if (n<1) n = 1;
    x->x_dist = (t_float)n;                           /* store n in a global variable */
    
}

static void rvbap_ft1(t_rvbap *x, double n)              /* x = the instance of the object, n = the int received in the right inlet */
// panning angle azimuth
{
    x->x_azi = (long) n;                            /* store n in a global variable */
    
}

static void rvbap_ft2(t_rvbap *x, double n)              /* x = the instance of the object, n = the int received in the right inlet */
// panning angle elevation
{
     x->x_ele = (long) n;                           /* store n in a global variable */

}
/*--------------------------------------------------------------------------*/

static void rvbap_ft3(t_rvbap *x, double n)              /* x = the instance of the object, n = the int received in the right inlet */
// spreading
{
    if (n<0.0) n = 0.0;
    if (n>100.0) n = 100.0;
    x->x_spread = (long) n;                         /* store n in a global variable */
    
}

/*--------------------------------------------------------------------------*/

static void rvbap_ft4(t_rvbap *x, double n)              /* x = the instance of the object, n = the int received in the right inlet */
// distance
{
    if (n<1.0) n = 1.0;
    x->x_dist = (t_float)n;                           /* store n in a global variable */
}


#endif

static void *rvbap_new(t_symbol *s, int ac, t_atom *av)  
/* create new instance of object... MUST send it an int even if you do nothing with this int!! */
{
    t_rvbap *x;
#ifdef MAXMSP
    x = (t_rvbap *)newobject(rvbap_class);
    
    t_floatin(x,4);       /* takes the distance */
    intin(x,3); 
    intin(x,2);                 /* create a second (int) inlet... remember right-to-left ordering in Max */
    intin(x,1);                 /* create a second (int) inlet... remember right-to-left ordering in Max */
    x->x_outlet4 = floatout(x); /* distance */
    x->x_outlet3 = intout(x);
    x->x_outlet2 = intout(x);   /* create an (int) outlet  - rightmost outlet first... */
    x->x_outlet1 = intout(x);   /* create an (int) outlet */
    x->x_outlet0 = listout(x);  /* create a (list) outlet */
#endif
#ifdef PD
    x = (t_rvbap *)pd_new(rvbap_class);
    floatinlet_new(&x->x_ob, &x->x_azi);
    floatinlet_new(&x->x_ob, &x->x_ele);
    floatinlet_new(&x->x_ob, &x->x_spread);
    floatinlet_new(&x->x_ob, &x->x_dist);

    x->x_outlet0 = outlet_new(&x->x_ob, gensym("list"));
    x->x_outlet1 = outlet_new(&x->x_ob, gensym("float"));   
    x->x_outlet2 = outlet_new(&x->x_ob, gensym("float"));   
    x->x_outlet3 = outlet_new(&x->x_ob, gensym("float"));   
    x->x_outlet4 = outlet_new(&x->x_ob, gensym("float"));   
#endif

    x->x_azi = 0;
    x->x_ele = 0;
    x->x_dist = 1.0;
    x->x_spread_base[0] = 0.0;
    x->x_spread_base[1] = 1.0;
    x->x_spread_base[2] = 0.0;
    x->x_spread = 0;
    x->x_lsset_available =0;
    if (ac>0) {
#ifdef MAXMSP
        if (av[0].a_type == A_LONG)
            x->x_azi = av[0].a_w.w_long;
        else 
#endif
        if (av[0].a_type == A_FLOAT)
            x->x_azi = av[0].a_w.w_float;       
    }
    if (ac>1) {
#ifdef MAXMSP
        if (av[1].a_type == A_LONG)
            x->x_ele = av[1].a_w.w_long;
        else
#endif
        if (av[1].a_type == A_FLOAT)
            x->x_ele = av[1].a_w.w_float;   
    }
    if (ac>2) {
#ifdef MAXMSP
        if (av[2].a_type == A_LONG)
            x->x_dist = (float)av[2].a_w.w_long;
        else
#endif
        if (av[2].a_type == A_FLOAT)
            x->x_dist = av[2].a_w.w_float;  
    }
    return(x);                  /* return a reference to the object instance */
}